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Abstract

Video games that customize to a player's experience level and abilities have the po-

tential to allow a broader range of players to become engaged and maintain interest

as they progress in experience level. A game that uniquely customizes the player's

experience could attract additional demographics to gaming, which will result in a

distinct edge in marketability and potential revenue. This thesis examines a sub-

section of adaptive gaming systems from the perspective of identifying game factors

that alter the level of di�culty. Our focus is to provide a solution useful to both

research and commercial gaming communities by developing a system that simulates

results o�ine yet can be integrated into online play. While online performance is

the main goal of an adaptive system, the o�ine simulation provides several bene�ts.

O�ine simulation allows the elimination of insigni�cant factors from inclusion in the

training and evolution phase of machine learning algorithms. In addition it provides

commercial games with a useful tool or method for performing game balancing and

level tuning. To test our approach we designed a test-bed version of the game Pac-

Man. The experimental testbed alters environment variables to evaluate their e�ect

on a set of selected response variables. Observing the results of several response vari-

ables provides the potential to represent multiple player states, though our focus is

on controlling the di�culty for a player. The testbed will simulate the actions of

both Pac-Man and the ghosts over a variety of di�erent settings and strategies. The

evaluation of a factor's signi�cance and its e�ect size are calculated using a factorial

analysis approach. This method allows the identi�cation of factors relevant to both

individual strategies, and the set of all player strategies. Finally, as a proof of concept

for both the online and adaptation prospects of this method, we developed a proto-

type adaptive system. Utilizing the relevant factor e�ects calculated in the factorial

analysis, the prototype adapts to control the progress of the game towards targeted

response variable intervals.
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Chapter 1

Introduction

1.1 Overview

Over the last several years, the video game industry has steadily increased its �nancial

contributions to the media sector and continues to be one of the largest areas for

potential growth [58]. One of the keys to the success of the game industry has been

the ability to �nd new demographics of game players outside the normal user groups

[11]. A large portion of the recent success can be attributed to a developmental shift

in the way players interact with their gaming system. Systems such as Nintendo Wii,

PlayStation Move and Microsoft Kinect utilize a non-standard control system, which

endorses a more intuitive set of motions to partially replace the use of button presses

to perform actions. Additionally, as a large number of games developed for these

systems are focused on simulating outdoor activities or being active these controller

systems have helped spark interest among new active users groups. As an example of

this success, Wii Sports for Nintendo Wii, which allows players to simulate playing

tennis, baseball and other sports recently became the all time best selling game [40].

As the demographics of game players expands, so too will the range of players

abilities and needs. Players will have varying skill levels in terms of characteristics

such as: reaction times, hand eye coordination, and tolerance for failure. The wider

range in players' abilities will increase the di�culty for game designers to sort players

into the usual static and preset di�culty settings of easy, medium and hard. When

the game's di�culty is not correctly matched to the player's ability it may cause the

player to become bored or frustrated with the game, and may result in reduced play

time or complete abandonment of the game. The di�culty setting of commercial

games are generally the results of an enormous number of hours spent balancing
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and tuning each level. Di�culty levels are determined to be appropriate based on

testing by game testers and may not represent a diverse or introductory selection

of players. The signi�cant amount of time spent by game testers, level designers,

and programmers can be quite costly for companies, and the end result may still not

provide an adequate learning curve for new players. Allowing the player to manually

switch between di�culty levels allows them to ease their own progression in the game.

However, it can result in a number of problems from disrupting the immersion of the

game by having to go switch the di�culty rating, to having the player trying to

accurately judge their own level of play as well perform an accurate assessment of

unseen tasks and opponents. An alternative method used in commercial games such

as God of War is to ask the player if they wish to have the di�culty level lowered

after a set number of deaths. This option does not have the ability to increase the

di�culty and can frustrate players by suggesting they need to decrease the di�culty

when they simply wish to try again.

An additional issue that arises with the development of games is developers over

focus on creating games which appeal to themselves or to other well known user

groups. This process is known as implicit audience modeling. Implicit audience

modeling can result when developers believe they know what their audience wants out

of the game instead of asking them. The traditional game development process focuses

on developing games for these well known user demographics. This results in a large

number of games being simple extensions of other successful games in the market.

An important issue arises in attempting to develop for new player demographics:

do developers actually know what these new players want out of their experience

of playing the game? Since it is only recently that the gaming market has been

able to lure these demographics into playing, we know very little about their playing

styles and preferences. Developing games for these atypical gamer demographics

starts with understanding what attracts their attention. However, if this information

was readily available, developers would have already used this knowledge to attract

these demographics. Thus, if we are interested in reaching and maintaining these and

other atypical gamer demographics, we should be developing technology that identi�es
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and adapts to a players' needs. Adaptable game systems have been proposed as a

possible solution to accommodate the growing variation of player's needs, preferences

and abilities. The traditional game process rarely allows for adaptability within their

games as a means of retaining or attracting a wider spectrum of users. The lack of

adaptation is partially due to the additional cost, tight time-lines of projects and the

believed additional required testing. However, as the process of customizing the game

to the player matures, it should be capable of easing new players into the mechanics

of gameplay, while providing challenging levels for experienced users. The wider

the spectrum of players introduced to a game along with the positive adaptation

of the player's experience should provide enough motivation to outweigh the initial

costs of the system. Since it has been shown that games are often purchased on other

players' recommendations [11], a game that has the ability to adapt to human players'

strategies and abilities will provide a customized experience while keeping players

engaged in game play. Ideally, adaptive games will attract additional demographics

to their games, which will result in a distinct edge in marketability and potential

revenue.

1.2 Background

The main goal of adaptive game systems is to customize the game to produce an

immersive and compelling player experience. The goal of the adaptation process is

to produce a desired experience within the player, the overall goal of an adaptive

game is to produce an optimal immersive experience within the player, known as

Flow. Flow, originally proposed by Csikszentmihalyi [20], is described as a state

between boredom and frustration. �It is an experience so gratifying that people are

willing to do it for its own sake with little concern for what they will get out of it,

even if it is di�cult or dangerous� [20]. This is the experience we want to induce in

players of the game, where the motivation to continue playing is internalized and the

player is highly engaged in the game. The work of Sweetser and Wyeth [47] mapped

characteristics for producing Flow directly to video games to model player enjoyment,



www.manaraa.com

4

aptly terming their extension GameFlow. In terms of game development the most

signi�cant components of GameFlow are: challenge, player skills, control, clear goals

and feedback. These are the components game designers have the most control over,

and thus provide the best opportunities in the game for customization to produce

GameFlow.

The User-System Experience (USE) model further discussed in Section 3.1, is a

model speci�cally for video games which emphasizes the relationship between a user

and a system with the focus of producing Flow or other immersive states. This model

forms the basis for our design to produce the desired level of interaction, but it lacks

the required level of detail in terms of describing adaptive game systems. Adaptive

game systems can adapt to two broad categories of problems: usability problems and

playability problems. Section 2.1.6 brie�y introduces the types of usability issues,

although usability issues are important to adaptive game systems, they are beyond

the scope of this thesis and our focus will remain on playability issues. The majority

of commercial and academic research has focused on adaptation to playability issues

from the perspective of altering the level of challenge of the game. The level of chal-

lenge is one of the main components in several psychological models that describe im-

mersion. Adequately challenging the player in an engaging fashion can contribute to

the player being within an immersive state during gameplay. In addition, alterations

to the level of challenge are expected by players as part of the natural progression

of the game and can be accomplished in a natural and seamless fashion. In order

to be successful at producing an immersive experience in a player, the adaptive sys-

tem must monitor the player's performance, make adjustments throughout the game

and monitor the e�ect of those adjustments. The process of an adaptive game sys-

tem altering the level of challenge is a portion of a concept known as auto-dynamic

di�culty.

The concept of auto-dynamic di�culty deals with the process of allowing the

challenge of the game to adjust to the abilities of the players. Ideally, this process

will attract both regular gamers and non-gamers, by allowing non-gamers to become

engaged by lowering the initial learning curve and altering the rate of progression
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to avoid frustration that can cause newer users to give up on games. In addition,

it may enhance the challenge for regular players, who are experienced with game

genres, and have higher skill levels and expectations. Research in the area of auto-

dynamic di�culty has generally focused on the challenge component of GameFlow

and has approached the topic from two main perspectives: adaptation to the game

environment or adaptive arti�cial intelligence (AI). An example method of game en-

vironment adaptation is an object quantity control approach [25], which alters the

frequency of items or opponents the player will encounter in an area of the game. Us-

ing this method a game may alter the probability of �nding extra health if the player's

health is constantly low. In adaptive arti�cial intelligence(AI), the game agents alter

the quality of their decisions based on the player's current level of di�culty. The

term �agents� refers to characters in the game, which can include the player or other

characters known as non-playable characters. Non-playable characters (NPC's) are

characters in the game which the player has no control over, they can be opponents,

allies or neutral to your character. In adaptive AI if the player is experiencing bore-

dom, the game agents should choose moves that produce higher levels of challenge,

thus increasing the di�culty of the game, likewise they should select less challenging

moves when the player is at a level of di�culty beyond the player's ability [5].

An important discrepancy occurs in the game development community between

commercial and research arti�cial intelligence. In commercial games the term AI

usually describes the behavior and interactions of NPCs. Due to online requirements

and lack of supervision for results, commercial AI is often hard-coded or scripted

to perform the same actions with slight variations. Commercial AI rarely uses a

training or learning phase, although it could be said that their training phase occurs

from game testers and adaptation from their feedback. Throughout the remainder of

this research, we use the term AI to represent the process by which an agent makes

a decision, whether scripted or learned. Ultimately, commercial AI must begin to

utilize techniques from the research area to produce truly adaptable game systems.
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1.3 Thesis Focus

Our research will focus on adaptable game systems, in which user interaction with

the game is described via the USE model. The USE model focuses on the interaction

between user and game with the goal of optimizing the player's experience. However,

the USE model is a general model of interaction which does not directly focus on

adaptable games. To re�ne our research goals, we focus on a higher resolution model

known as the adaptable game system model (AGS) discussed in Section 3.2. The

AGS model easily integrates into the USE model to demonstrate how adaptation can

occur with the goal of promoting an engaged and immersed player. The AGS model,

proposed by Charles and Black [13], indicates that an adaptive game system needs

to accomplish the following online tasks:

• Player modeling which attempts to discover and classify a player's type and

needs.

• Online adaptation of the game environment in response to a player's needs.

• A monitoring system that evaluates the e�ectiveness of the adaptation.

• Dynamic player remodeling.

Our research has chosen to further investigate portions of two sections of the AGS

model relating to the second and third tasks of Charles and Black's adaptive game

system model [13]. We will investigate adaptation of the game environment in re-

sponse to a player's needs, as well as monitor the system and evaluate the e�ectiveness

of adaptation. Our research will investigate these two tasks from the perspective of

performing auto-dynamic di�culty. The player's needs form a dynamic entity and

can transition quickly in the same game session or over a longer period of time as

they continue to the play the game. The study of transitional states of an individual

is known as between-subject design. It is an important issue within adaptive gaming

as it addresses the player's needs within a particular game session. It can also be

used to predict the player's general behaviour as they progress over a longer term
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[9]. However, our research will focus on within-subject design, which attempts to

understand the player's current state. Our research will consider each experiment

independent of transition those we will only be considering the player's current state.

As previously mentioned, auto-dynamic di�culty is described as the task of altering

the di�culty of the game online in order to match the player's skill level. A game

with auto-dynamic di�culty will adjust the game to an easier setting if the player

is continuously having di�culty completing a task, and increase the di�culty as the

player masters di�erent game skills [30]. Choosing to adapt the level of di�culty in

our game focuses the player's needs solely in relation to requiring a higher or lower

level of challenge. Thus our research can focus on factors which a�ect the level of

challenge in either a positive or negative fashion. The majority of current research

has focused on the level of challenge as the primary target for adaptive games. Nearly

all current research de�nes positive or negative modi�cation to the level of challenge

in terms of a single response variable such as score or health. Our research will in-

clude a larger number of response variables from which the level of challenge could

be de�ned, and positive or negative modi�cation could be made. Throughout our

research, the term �the level of challenge� refers to our selected set of response vari-

ables or a subset of which could be used to estimate the level of challenge provided

by the game. Using multiple response variables allows adaptation to occur not sole

based on a single observable metric such as score, but could adapt based on a combi-

nation of metrics. Having multiple response variables provides a more complete view

of how the adaptive process is e�ecting the player's experience. In addition the use of

multiple response variables allows a more diverse set of potential actions when adap-

tation is required and allows the adaptive process to balance and control other player

preferences. Recent researchers have had relative success in using combinations of

response variables from a session to predict frustration, challenge and fun [56]. Thus

an aspiration of this project is that future work could progress towards combinations

of response variables for producing improved emotional states of players.

Dynamically adapting the game requires speci�c knowledge about the player and

the game. It requires creating a player model, which involves accurately predicting
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how a player will react in speci�c situations, their tolerance for frustration, history of

previous challenges, successes, and failures, as well as other preferences. Creating a

player model not only requires the prediction long-term behaviour or strategies but

also requires having a model of short-term behaviour which might simply be tempo-

rary adjustments based on strategy or temperament. However, having an adequate

player model for all of this information still requires altering the di�culty of a game to

challenge and accommodate these player preferences. As the e�ectiveness of adapta-

tion can be measured without the use of accurate player models, in that we can adapt

the game and then observe the reaction without knowledge of a player's preferences,

we decided to focus on measuring adaptation, and leave the larger problem of online

dynamic player modeling for future research. This thesis will examine the e�ective-

ness of alterations to the non-playable characters (NPC's) and the game environment

against a set of varied player strategies. To accomplish the larger goal of an adaptive

game system, it is �rst essential to understand how alterations to variables of the

game will a�ect the player's performance.

Throughout our research we will focus on several goals, the main focus will be to

produce a method capable of contributing to current research techniques in adaptive

games, as well being useful to commercial games for level balancing. The method-

ology used will identify game factors which provide signi�cant impact to a set of

response variables relating to the level of challenge. In order to successfully adapt to

the player's level of challenge, we must understand which game factors impact the

response variables and the direction and degree of their impact.

1.4 Proposed Solution

One intention of our research is to provide a methodology which is capable of being

utilized by both the research and commercial game communities. To accomplish this

goal we must consider that few commercial games are utilizing online machine learning

techniques, although this trend is beginning to change, commercial games rarely

include online learning for released games. Thus our selected approach to identify
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game factors which a�ect the level of challenge is an o�ine approach, but an important

role for our o�ine approach is that it should be capable of being integrated or used

in combination with an online method with minimal e�ect on the online performance

requirements. A critical issue with designing an adaptive gaming system is user-

testing and collecting information about the e�ects of the game on each potential

player. Our research will use a within-subject design which attempts to understand

the player's performance under a variety of settings, but this is not accomplished

with online users. Instead, we will attempt to simulate a wide range of di�erent

player strategies through static behaviours and attempt to identify factors which

impact those static strategies. The ability to identify factors which impact the level

of challenge is useful to current research in game communities as a preprocessing step,

as game factors which are not important to the level of challenge can be omitted before

training and online adaptation of NPC's strategies.

To experiment with our proposed research goals we require a testbed environment;

we have chosen Pac-Man as our testbed game. Pac-Man is a well known game with

a simple graphical interface, which is easy to learn and to become involved in, yet

is a di�cult game to master. Pac-Man is commonly used in adaptive game research

due to the simplicity of its interface and game rules, while providing the ability to

integrate complex strategies and team behaviors. Due to Pac-Man's wide use in the

research community, adaptive game design results and methods could be compared

to and reused in other research. Our Pac-Man testbed must be capable of adapting

game factors in both an o�ine and online setting. To accomplish this, the testbed

was altered to allow game factors and allowable levels for those factors to be loaded

via �les. In addition the testbed required a system to keep track of important events

and information. We developed a logging system for the experiment to log statistical

and event information for multiple game systems in an XML format, eventually to be

used in calculating response variable information. Finally, we altered the testbed to

simulate game play utilizing the selected game factors, agent movements and actions

and logged the results.

Evaluation of our experiment will occur in three main stages; the �rst stage will
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determine the e�ect size of all game factors and their interaction which will utilize a 2k

factorial analysis which is further described in Section 5.1. The factorial design allows

us to observe factor interactions, as well as individually factor values. Observing the

results of factor interactions allows us to discover any emergent e�ects that may

unexpectedly occur. The �rst stage will also calculate a statistical model which

indicates the amount of variance described in Pac-Man's performance.

The second stage after calculating the size of e�ects for factors of the experiment,

utilizes the results in two methods: the �rst is an o�ine comparative method in

which we evaluate factors' e�ects on the set of response variables. The performance

of Pac-Man will be compared to other simulations of the experiment with the same

algorithm but with di�erent factor levels. Comparing the performance of the same

algorithm with di�erent factor levels allows us to examine the di�culty experienced

by an individual algorithm. We hope to identify factors which increase or decrease

the di�culty for certain algorithms but not necessarily all algorithms, as this will

potentially show an ability to identify di�culty in di�erent player types. The com-

parative method will also compare the performance of a factor across all algorithms

to identify the global e�ect on the di�culty of the game. This will provide evidence

of a factor that could provide alterations to the level of di�culty for all player types.

The �nal stage of our proposed solution is to build a proof of concept adaptive

game system, which will utilize the information of the e�ects of factors and their

interactions to dynamically adapt the progression of the game. While the comparative

method identi�ed trends and results which could be utilized to perform level balancing

or model building, this section progresses toward the automatic adaptation similar

to other current research. The prototype will demonstrate the practicality of an

intermediate step between the current method of static di�culty settings and the

potential of adaptive game systems. The prototype begins with two separate static

di�culty settings, as the game progresses it adapts game factors values from one of

di�culty settings to the other, thus allowing the game to smoothly transition between

the two di�culty levels. In the prototype adaptation will occur to control for one or

more response variables based on ranges selected prior to running the prototype.
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We will specify desired target ranges for a response variable which could represent

possible player preferences in future research. We will design a set of heuristics to

estimate the player's progression during gameplay and the level of change required

to meet the target range. Using the factor e�ects information from the experiment

phase of our research, our system will select factors settings adequate to the level of

requested change for the player.

1.5 Outline

This thesis is organized as follows: Chapter 2 introduces necessary background infor-

mation to comprehend the current direction of research on auto-dynamic di�culty.

The background section will introduce base psychological models for player enjoy-

ment and player types. We will introduce methods of measuring player states, and

modeling opponents utilizing static and learning algorithms. Chapter 3 reviews cur-

rent research relating to adaptive game systems. Chapter 4 discusses in detail the

testbed game designed for the proposed solution. Chapter 5 discusses the experi-

mental environment and evaluation of the proposed solution. Using the results of

the experimental phase of our solution, we build and review the results of the adap-

tive game system prototype in Chapter 6. Finally, Chapter 7 concluded our results

from the experimental phase and prototype, and discusses the contributions of the

proposed method, as well as highlights possible areas for future work.



www.manaraa.com

12

Chapter 2

Background

This chapter focuses on introducing the necessary multidisciplinary concepts in order

to study adaptive games. Section 2.1 introduces models explaining how players expe-

rience the game. Section 2.2 reviews reasons players play games and the classi�cation

of their gaming needs. Section 2.3 introduces algorithms for performing adversar-

ial searches and group behavior. Finally, Section 2.4 introduces machine learning

techniques utilized in current research.

2.1 Player Enjoyment

This section introduces the idea of immersion and the psychological model for optimal

immersion, known as Flow. This section introduces key traits and terms from Flow

and their application in game design. Finally, we summarize the research of this

model applied to rating player enjoyment in video games.

2.1.1 Immersion

Bartle, co-creator of multi-user dungeons (MUD), describes immersion in terms of

games as �Immersion is the quality of being your virtual self� [9]. The progression

of becoming your virtual self, begins with two separate systems: the player and the

avatar. The avatar is the player's character represented in the game world. Eventu-

ally, the player begins to identify with the avatar and recognizes himself as a character

in the game. Finally, the game character becomes a persona which is the representa-

tion of his virtual self [9].

Ermi and Mayra [21] proposed that immersion was based on three fundamental
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components; sensory, challenge-based and imaginative immersion. Their model, the

SCI (sensory, challenge, imaginative) model, was formed based on questionnaires of

young players, and stated that players could have di�erent levels of participation in

each of the three components. Participation and engagement in at least one of the

three components was the requirement for producing a state of immersion for younger

players. As an example, a game like Pac-Man could be immersive solely on challenge

but possibly also imaginative.

Immersion is a di�cult state to measure, as it must be implicitly studied while the

player is in the state. Self-reports often cause the player to leave a state of immersion

and direct focus away from the task an individual is immersed in [17]. This has led

some researchers to attempt to purposely break the player's state of immersion in

attempts to better understand it. Cheng and Cairns [17] provided an experiment in

which once players were suspected of being immersed the realism of the game would be

completely altered. Their experiment included changes to the environment graphics

and behavior of game physics. Cheng and Cairns provided surprising results, in that

large alterations to the game did not a�ect the player's experience. In fact, several of

the participants did not recall the changes being made until prompted in post game

reviews [17].

2.1.2 Flow

Flow, originally proposed by Csikszentmihalyi [20], is a state of immersion, where

the individual is fully engaged, energized by and focused on a task. Flow is often

described as a �pleasurable balance between anxiety and boredom�[20]. If a task is

too simple, an individual will reach a state of boredom and lose interest in the task.

Likewise, if the task is too di�cult an individual will lose interest because theyfeel

frustrated by an inability to complete the task. Thus, Flow occurs when an individual

is engaged in a task, where their skill level is appropriate for the level of challenge

provided by the task. Csikszentmihalyi originally divided Flow into several main

elements:
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1. A task to be completed.

2. The ability to concentrate on the task at hand.

3. Concentration is possible because of clear goals.

4. Task provides immediate feedback.

5. A sense of control over actions.

6. A deep but e�ortless involvement that removes awareness of the frustration of

everyday life.

7. Concern for self disappears, but reemerges stronger afterwords.

8. Sense of time is altered.

Every element listed above does not need to be present to produce a state of Flow, a

subset of several of these elements may be enough to induce Flow in an individual.

Figure 2.1: An illustration of the Flow Channel, which is the ideal balance for an

individual between anxiety which occurs when the level challenge is above their ability

and boredom which occurs when the level of challenge provided by the task is well

below the ability of they individual. Adapted from[16].
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2.1.3 Telepresence

Telepresence is an immersion model of experience like Flow, but is based on a more

passive experience. It can be used in situations where challenge, and player skills are

less applicable. Telepresence is described as an �experience of presence in an environ-

ment by means of a communication�[11], and individuals are usually responsive and

sensually involved in the system. Telepresence is thought to account for immersion

when an individual is not in a state of Flow [11]. An example of a situation in which

people are likely to experience telepresence is when they are watching a movie.

2.1.4 Feedback

In terms of games, the player should constantly and consistently be receiving feedback

whether it is from the player's avatar responding to game-pad input or feedback

relating to the player's progression through the game. In Section 2.2 we will discuss

how di�erent player types require di�erent amounts of feedback about their game

progression. Detailed feedback can be di�cult to provide when the player strays

from the normal game path; unfortunately these are the players that likely require

additional feedback. Another issue that arises from a player deviating from the normal

game path is whether they are enjoying their exploration or whether they are simply

unsure of what to do next. Players who are exploring will �nd feedback indicating

they are going the wrong direction to be an unnecessary intrusion into their game

playing.

Positive feedback is when the game becomes easier to complete as a result of the

player completing some task or game objective. This can occur by players acquiring

new weapons, or by a slight increase in the avatar's attributes in sports games while

a team has momentum of the game. Using positive feedback helps the game progress

and avoids states of stalemates in which neither player can win. The progression

of a stalemate game shown in Figure 2.2, produces a back and forth match-up, in

which neither player is capable of gaining a substantial lead or moving to a winning

state. When the game progresses in a pattern similar to the stalemate situation it
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may result in the player feeling as though their opponent will always catch up, which

can result in the player externalizing match up results to luck or unfair play.

Figure 2.2: Represents a version of a stalemate game where players produces small
leads but fail to progress to a winning state. Adapted from [1].

However, using too much positive feedback may result in an unbalanced game.

Consider a situation in which a player is always given direction and the means to

accomplish their goals; in this scenario the game can become too easy or limit oppor-

tunity to explore. Negative feedback is the opposite of positive feedback: a player's

achievements result in the game di�culty increasing. Negative feedback naturally oc-

curs as a player progresses through a game; the next level of a game is typically more

di�cult than the last. Negative feedback controls positive feedback and vice-versa.

However, negative feedback can cause stalemates and large swings in the challenge of

the game if performed improperly.

Figure 2.3 shows the ideal game progression that is balanced between the two

players A and B with an appropriate level of feedback. Player A completes the �rst

task and begins to progress toward winning the game, when negative feedback occurs

and player B begins to catch up then surpass player A in the likelihood of winning.

Once player B progresses toward a winning state negative feedback for player B ramps

up, and slowly player A begins to catch up. This trend continues slowly progressing

towards the advantage of player A. Each time player B falls a little further behind,
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still able to almost draw even but taking the lead on fewer occasions [1]. This derives

a back and forth type of game, which provides the illusion of winning to both players,

where both players feel they are capable of winning if they just make a few minor

adjustments. This helps players develop emotional attachment to the game, and

promotes tweaking strategies to achieve victory.

Figure 2.3: An ideal game progression where each player has the opportunity to win

until eventually one player takes a controlling lead. Adapted from [1].

2.1.5 GameFlow

Flow was later directly applied to modeling player enjoyment in games by Sweetser

and Wyeth. In their paper, Sweetser and Wyeth took the eight original components

of Flow and de�ned each component in greater detail in terms of player requirements

and game play [47].

1. The task to be completed is the game.

2. The game should immediately grab users' attention.

3. Perceived skills should match the task challenges, and both must exceed a

threshold of boredom.
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4. A player has control over their actions in the game, as well some sense of control

over the direction of the game.

5. Goals throughout the game should be clear.

6. Immediate feedback should be given to the player.

7. Immersion in the game should be deep but e�ortless, and reduce the sense of

self and time.

8. Social interactions should be supported through cooperative and competitive

interactions among players.

Although game designers can promote methods to improve concentration, immersion

and social interactions components, they ultimately have the least amount of control

over these areas. While concentration and social interaction components are areas

of GameFlow which are related to the player's habitual environment, immersion is

part of the resulting experience. Games either include a social aspect such as multi-

player modes or social interaction can occur via controller passing. Game designers

have minimal opportunity to modify this aspect of the game post-production. The

components challenge, player skill, clear goals, control and feedback are components

of higher interest in developing a system with auto-dynamic di�culty as they can be

modi�ed in real time to help produce �ow. The components of GameFlow can be

categorized into three sections: game interface, game mechanics and game play. The

game interface is highly correlated to the level of feedback, clear goals and control com-

ponents. Game heuristics for the interface include: providing essential information

in a clear method and allowing customization for controls. Game mechanics heuris-

tics deal with clear goals and feedback, grabbing the user's attention immediately

and reacting to theiractions. Game play heuristics deal with the level of challenge,

clear goals, control and feedback. Players should always have both short and long

term goals, and pressure should be applied to lead them towards these goals without

frustrating them if they choose not to perform a particular goal. The level of game

play should be balanced, and provide variable levels of di�culty [22]. The GameFlow
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model has been applied to predicting player enjoyment in real time strategy (RTS)

games. The results were similar in comparison to those of expert game reviews [47].

2.1.6 Problems in Game Play

In terms of GameFlow, designers have control over the level of challenge, control,

producing clear goals and feedback. Designers will face two types of issues in con-

trolling these components, the �rst being usability and the second being playability.

We will brie�y introduce some issues relating to usability here, which are included

for completeness but are not discussed further. Usability problems are issues where

the game is fully functional, yet lacks appropriate communication to the user of how

to easily accomplish desired tasks [8]. A common usability problem that occurs in

games is when a player is unsure of where to go next within the game world, often due

to a lack of clear goals and feedback. According to Zap and colleagues [59], usability

problems can be subdivided into four groups: knowledge base, intellectual, �exible

and sensorimotor. In terms of games knowledge, problems occur when the player

is given an inadequate amount of information to complete a task or progress in the

game. Within the GameFlow model, knowledge usability problems occur in games

due to a lack of clear goals or appropriate feedback of controls to achieve goals [48].

Intellectual usability problems can be further divided into three groups: thought,

memory and judgment problems. Thought problems occur in games as a result of

poor feedback; the player knows the goal they wish to accomplish, yet are struggling

to achieve this goal as a result of uncertainty of their progress. As an example, if

the player needs to complete an ordered set of tasks to complete a goal, if they don't

receive an acknowledgment when they have completed a portion of the tasks, they

may continue attempting the �rst task instead of progressing to the next task to

accomplish the goal. Memory usability problems occur when the player has correctly

identi�ed the next goal and yet struggles to progress as a result of forgetting a portion

of the process required to achieve this goal. Memory problems such as this can be

caused by an inappropriate amount of feedback or by de�ning goals which take too

long to complete. Finally, judgment usability problems occur when feedback is unclear
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to the player and it is unclear whether the task has been successfully completed.

Flexible usability problems can be further divided into three groups: habit, omis-

sion and recognition problems. Habit problems occur when a player performs an

action in the wrong context. An example is when a game does not utilize a stan-

dard genre control scheme and the player presses the standard scheme button instead

of the game speci�c button for an action. Habit problems are caused by controls

but can also be caused by lack of feedback indicating to the player that the game

does not follow standard implementation. Omission usability problems occur when a

player omits a routine portion of a scheme or task. Omission problems tend to occur

when the player's skill level is above the level of challenge of a simple task or when

feedback fails to draw player attention to a task. Finally, recognition problems occur

when feedback is di�cult to distinguish between other symbols or other goals. An

example might be when the player is asked to collect an item, and he is shown a small

blurry image which may be confused with a number of other items in the game

Lastly sensorimotor issues relate to the player being capable of successfully com-

pleting the required motor-skill. Sensorimotor issues can arise due to a lack of player

skill, control issues or as a result of poor game interface design. However, in terms

of usability sensorimotor issues usually relate to di�culty experienced by many indi-

viduals, and thus is less related to a player's level of skill.

Playability problems occur when portions of the game demotivate the player from

progressing to the next task in the game. Playability issues can be segregated into

four types of problems: control, fantasy, curiosity and challenge problems. Control

problems relate not to controller issues but to who has control of the player's agent.

During long introductory movie sequences or tutorials the player may not have full

control of their agent, which causes the player to become impatient with their level

of involvement. Fantasy problems relate to the rejection of a portion of the fantasy

world that the game is attempting to entertain the user with. Fantasy problems can

be catastrophic to a player's experience, as players are less likely to delve into a game

in which they reject a portion of the basic premise. Fantasy problems are a major

issue; however, the adaptability of a game can only extend so far to customize to the



www.manaraa.com

21

player's experience, so players facing this issue should investigate alternative games.

Curiosity playability problems occurs when a player has been involved with a task

for an extended period of time and begins to feel bored due to lack of new tasks or

actions. Essentially, it occurs when the player feels they have learned a task to their

level of satisfaction, and yet are unable to progress in the game. Challenge problems

occur when the level of challenge is either too high or too low for the player's level of

skill.

The majority of usability problems that a�ect GameFlow are related to controls,

clear goals, and adequate feedback. Having an intuitive and �exible game does not

make the game fun. It helps the player get involved in the game and avoid unin-

tentional frustration or demotivating the player. Ultimately, playability is the most

important issue for game designers. In terms of playability, curiosity and challenge

problems are of greater importance to the level of di�culty of the game. Although

control problems can disrupt a player's sense of �ow, it is good game design practice

to allow the player to skip situations in which they do not have control such as tuto-

rials or story sections. Fantasy problems are likely the result of a player not enjoying

a genre of games or the story of a particular game. In either case this is an extremely

di�cult problem to solve. Challenge problems are the main focus of auto-dynamic-

di�culty research to date. The key to challenge problems is to keep the player's

level of di�culty in a range in which they are excited yet do not feel overwhelmed by

the game. Finding a player's accepted range of di�culty means understanding the

player's preferences and goals. To understand these, we will investigate player types.

Understanding player types will also help us solve the curiosity problem. If we are

capable of identifying the player's level of tolerance for repetition and frustration, we

can identify when a player is likely becoming bored or frustrated with the given task

and provide aid to allow for progression.

2.1.7 Challenge and Di�culty

The level of challenge of a game is directly related to the Flow experience of an

individual. Challenge is also one of the three general components of the SCI model
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for producing immersion, and is one of the major component of Flow in games [21].

The �eld of adaptive games de�nes the level of challenge as the amount of information

an individual has to process, proportional to the rate of new information. Within

this de�nition new information may simply refer to objects which are moving or are

dynamic in the game. Challenge is often measured on two dimensions: the speed

required to perform a task, and the level of cognitive involvement [21]. From the

de�nition of challenge, we can observe that as a player gains experience with a game

there is less new information to absorb, thus the level of challenge decreases.

The level of di�culty of the game refers to the level of the challenge relative to the

player's level of skill. This de�nition highlights that a game may have a steady level

of challenge between a set of players, and provide di�erent levels of di�culty to each

player. Thus in order to alter the level of di�culty we must perform adjustments to

the level of challenge in relation to the player's skills.

Throughout the game a player will master new skills, acquire more powerful items

and will optimize their strategies, thus in order to continually challenge the player

the overall level of di�culty of the game must consistently increase in value. A

natural progression in games is for the level of di�culty to remain constant while

the player learns a new skill or progresses their player to a satisfactory level above

the current level of challenge provided by the game. During this moment the player

has the opportunity to experiment and understand their progression whether with a

new weapon or strategy. Eventually the continuously successful methods lowers the

level of challenge, and is not o�ering the opportunity for new information or learning.

Before the level of challenge decreases such that boredom plagues the player, the

level of di�culty must be raised so that learning and engagement can progress. The

increase in the level of di�culty is an increase in negative feedback similar to the ideal

game progression, shown in Figure 2.3. Figure 2.4 illustrates the natural progression

of di�culty in the game in order to produce a learning and challenging environment

[6].
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Figure 2.4: When a player begins a new game they must learn new skills to participate

in the game. The challenge level remains steady as the player masters these skill, as

a result the di�cult of the game decreases. Before the player becomes bored from

repetitive tasks, new obstacles must be introduced such that additional learning is

required, which promotes interest. This process continues throughout the game and

is known as the desired progression of di�culty. Adapted from [6].

2.2 Player Types

This section introduces classi�ers for personality traits. The �rst classi�er is the

casual vs core spectrum which separates gamers based on their dedication levels. Next

we introduce the Myers-Briggs typology as a more general classi�er which provides

additional information beyond the scope of the game and into the player's overall

personality. Following the section on Myers-Briggs typology we introduce several

ways of classifying game players based on their overall goals and motivations while

playing the game. The �rst player classi�er introduced in Section 2.2.3 is known

as Bartle's player types and is based on Bartle's experience observing multi-level

dungeon games. Section 2.2.4 reviews a classi�er based on the emotional motivation

of a player. Section 2.2.5 introduces a section on understanding patterns in behavior.

Section 2.2.6 introduces research based on Myers-Briggs from a commercial company
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to identify player types.

2.2.1 Casual to Core Players

The ability to dedicate a high level of concentration to a particular task plays an

important role to the development Flow; with this in mind a key consideration for

game designers is the amount of time a player is willing to invest in playing the

game at any one period of time. Ip and Adams [26] proposed �fteen weighted factors

that attempt to separate users into the casual-to-core player spectrum. These factors

include: personal investment, tolerance to frustration, engagement with the game

and other players, and goal oriented personalities. This creates a scale known as the

casual to core gamer dedication. Ip and Adams [26] hypothesize the existence of �ve

categories along this scale. These categories are presented in largest to smallest gamer

population size respectively: ultra casual/non gamer, casual, transitional/moderate,

hardcore and ultra-hardcore. Although research is still lacking in the probability of

transitioning between categories, the scale does illustrate a largely untapped market

of potential gamers in the middle of the casual and hardcore categories.

2.2.2 Myers-Briggs Typology

The Myers-Briggs typology is a psychological model for classifying individuals based

on personality traits [11]. The model consists of four pairs of traits:

1. Introversion and Extroversion

Extroverts tend to be motivated by social interaction, and tend to have an act

�rst think later type attitude. Introverts tend to be motivated internally, and

enjoy one-to-one communication.

2. Sensing and Intuition

Sensors tend to use common sense, and prefer situations with clear information.

Intuition individuals tend to be creative, and enjoy implied and theoretical

information.
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3. Thinking and Feeling

Thinkers are task oriented, and enjoy logic, facts and are comfortable with

con�ict. Feelers focus on the consequences to other people, and are unsettled

by con�ict.

4. Judging and Perceiving

Judgers are planners, who focus on one task at a time. Perceivers enjoy multi-

tasking, freedom, variety and �exibility.

An individual's personality is composed of a percentage of each of the eight traits,

however the dominant trait of each pair is used to �t them into one of sixteen groups.

As an example, a person may be extroverted, sensing, judging and perceiving also

known as ESJP. From the sixteen groups, it is hypothesized that the hardcore player

type is characterized by introverted, thinking and judging an I_TJ trait set, and that

sensing or intuition have less e�ect on the hardcore to casual player relation [11].

From the casual to core spectrum, the hardcore cluster is the smallest in population

size, yet is thought to have the largest impact on the gaming industry. This is believed

to be true because hardcore players are more likely to review games, play and purchase

new games and thus propagate more information about potential games to the rest

of the market [11, 26].

The Myers-Briggs typology provides information about the personality types of

current gamers and their preferred game genres. It also illustrates personality types

currently being neglected by or disinterested in the video game market. The current

game market is heavily dominated by the introverted character trait. Therefore, a

game interested in capturing the extroverted personality type may need to alter the

structure of the game to better suit their needs. Typically games such as Dance

Dance Revolution, that are turn based, after a short period of time are accepted

among extroverts. One type of modi�cation to the game that could promote higher

levels of interest among extroverted players is providing additional feedback on current

goals, if these players play infrequently they are likely to forget their previous position

or tasks in the game [11].
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The Myers-Briggs typology also illustrates how players prefer information dis-

played to them. The sense and intuition dichotomy illustrates how di�erent people

enjoy learning and solving problems. This is important for developing tutorials, puz-

zles, game challenges as well as setting the pace of the game. Players with a dominant

sensing trait make up 70% of the population and are often more patient with repeated

material, are less comfortable with abstract material and rely on their common sense

to solve problems [11]. This indicates that sensing people are likely to prefer straight

forward tutorials, as to comfort their ease into new situations. Likewise, the puzzles

and challenges of the game should be directed towards knowledge and skills acquired

during tutorials or game play. The intuition character trait, represents people who are

more comfortable with abstract ideas and enjoy drawing their own conclusions. People

with a dominant intuition trait would �nd the straight forward tutorial monotonous

and restrictive to their overall enjoyment. Intuition individuals are more comfortable

with unseen challenges and situations, they require less feedback than do sensing

individuals [11].

The thinking versus feeling dichotomy provides insight into the motivations of

the player as they play the game. Knowing the motivation of a player, allows the

game to provide appropriate feedback to encourage the player progress. Altering the

frequency of player feedback is not enough to ensure enjoyment; the feedback must

be more speci�c to a user. Where thinking individuals respond well to clear goals,

a feeling type may not respond well to a clear goal if they feel they are unable to

accomplish it. Thus a feeling player may require additional progression information,

and overall more feedback than their counter type. The di�culty of catering to the

feeling type of gamer is that although they require more frequent feedback on their

development in the game, they are also more sensitive to critical analysis. An example

of the stark di�erence between how the two type interpret feedback is observed during

the �Game Over� screen [23]. Feeling type players see this as an extra criticism with

no positive feedback or options whereas the thinking type see this as an opportunity

to re�ect on their own play, only becoming frustrated once they are unable to develop

alternative strategies to avoid the game-over screen. An additional bene�t of knowing



www.manaraa.com

27

the motivations of a player is that it allows the game to adjust rewards for completing

objectives and goals. As an example, if the player is a feeling type, they could be

rewarded with a feedback tool such as a beacon for a map, whereas a thinking player

may be rewarded with a di�erent weapon [11].

The judging and perceiving dichotomy provides insight into the motivation of the

player from a goal-orientation perspective. The perceiving player generally plays to

improve his own skills at a particular task, and thus are more comfortable within

a less structured game model. On the other hand, judging players tend to prefer a

straight forward path focusing on the task at hand, and are motivated by the overall

completion of the game [11].

Finally, the combination of thinking-judging player is more focused and enjoys

con�ict and challenge. Its counterpart the feeling-perceiving player sees having easy

fun as the key motivational factor, and is less tolerant to frustration. The thinking-

judging player type is often associated with the hardcore player type from the Ip and

Adams study [26].

2.2.3 Bartle's Player Types

Bartle's player types [9] help describe the general motivation of a player. It shows

which types of actions the player currently �nds �fun� within the context of the virtual

world. A player's decisions are divided between their relation to other players or the

world, and between actions or interactions. Thus, the original Bartle model consisted

of four types of players: killers, achievers, explorers and socializers.

Although Bartle's model was widely accepted, it lacked an explanation for three

major situations: distinct subgroups within a player type, transitions made between

player types and it provided no explanation for immersion. Thus, Bartle proposed

a slightly modi�ed model that contained a new dimension implicit and explicit. Im-

plicit actions are done without thought of consequence. Whereas explicit actions are

performed in terms of an overall plan. The inclusion of a third dimension lead to

solutions for all three states problems with the model.

As a result of Bartle's model changes, it now accounts for how players change
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Figure 2.5: Bartle's original model describing player multiple player types. Adapted
from [10].

type over time, new models for player progression were formed between types. A

total of four sequences were produced that describe a player transition from being a

new player to being a consistent player. The four sequences are:

1. Main Sequence = Griefer -> Scientist -> Planner -> Friend

2. Socializer Sequence = Griefer -> Politician -> Networker -> Friend

3. Explorer Sequence = Opportunist -> Scientist -> Planner -> Hacker

4. Minor Sequence = Opportunist -> Networker -> Planner -> Friend

The new dimension of Bartle's model adds a motivation to the original player types

described in the previous generation of the model. The killer player type which enjoys

defeating other players, is now a combination of politicians and griefers. Griefers

are players who enjoy harming other players while politicians enjoy interacting and

resolving issues. Explorers are players that enjoy exploring and understanding the

rules of the environment. They are now split as scientists and hackers. Scientists are

inquisitive players and hackers enjoy testing the bounds of discovered rules. Socializers

are people who play to interact with other people. Socializers are sub-categorized into

networkers and friends, to de�ne the people whom they are attempting to interact
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Figure 2.6: The adapted version of Bartle's player types model which includes a new
dimension to explain player progression. Adapted from [10].

with. Finally, achievers are players who enjoy accomplishing goals provided within

the game, they are divided into opportunists and planners. Planners enjoy being told

the next goal to accomplish, whereas opportunists enjoy �nding their own way to the

goal and are more comfortable with improvisation needed for their plan [10].

2.2.4 Emotional Motivation

Lazzaro [29], demonstrated that players choose games not solely on the quality of

the game, but based on an expected experience provided by the game. According to

Lazzaro there are four main keys to promoting emotion: Hard Fun (emotions from

challenge), Easy Fun (emotions from curiosity), Altered States (emotion through

perception, and thought) and The People Factor (opportunities to socialize and com-

pete). These four keys are closely related to Bartle's original model of player types.

However, one of the key di�erences is that Lazzaro suggests that transitions between

the four states may be the result of emotional needs or desire for a speci�c experi-

ence [29], whereas Bartle has explained transitions between player types in terms of

planning actions. Emotional needs may implicitly be explained via the implicit and

explicit dimension of Bartle's reconstructed model [9]. A key �nal note about Laz-
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zaro's study is that it highlights the fact that player types can change dynamically

and more frequently than is proposed in the original Bartle model; this illustrates a

constant need to remodel the player model.

2.2.5 Temperament Theory

Temperament theory deals with understanding the patterns of behavior for an in-

dividual. It attempts to classify people not as a consistent personality type or as

a pattern of perception, but as a summation of di�erent dispositions to situations.

Whereas Myers-Briggs looks at how an individual thinks, temperament theory in-

vestigates how they behave. For our purposes, temperament theory breaks down

Myers-Briggs to four types of temperaments: rational, idealist, artisan and guardian,

each with an associated skill set and tendencies towards problem solving [11].

The rational temperament comes from the Myers-Briggs intuition and thinking at-

tributes. Rationalists utilize a strategic skill set, this involves planning and executing

plans to meet de�ned goals [11].

The idealist temperament is based on the intuition and feeling attributes of Myers-

Briggs. Idealists utilize diplomatic skill sets and are empathetic towards other players

and try to resolve con�icts in the game. These players become immersed in character

and story development [11].

The artisan temperament is based on the sensing and perceiving attributes of

Myers-Briggs. This group tends to enjoy managing a situation and executing plans.

They tend to enjoy a faster paced game in which they can perform immediate action

[11].

The guardian temperament is based on the sensing and judging attributes of

Myers-Briggs. The guardian skill set is referred to as a logistical skill set. It often

involves protecting and ensuring the needs of other characters. This group enjoys

organizing groups and tasks while trying to improve e�ciency with the organization

[11].

Using the skill sets from temperament theory and DGD1 player types, which are

described in the following section, we can develop types of events and feedback that
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are geared towards promoting Flow in the corresponding player types.

2.2.6 Demographics Game Design 1 (DGD1)

The Demographics Game Design 1 (DGD1) is research done by International Hobo

Ltd to identify demographic preferences and player types [1]. Building on the frame-

work of the Myers-Briggs personality types, the DGD1 identi�es four types of player

styles: conqueror, manager, wanderer and participants.

The Conqueror is a combination of the rational and guardian temperament or the

strategic and logistical skill sets, corresponding to Bartle's Killer type and thinking

and judging in Myers-Briggs. Conquerors are players who enjoy defeating the game

and other players. This group enjoys hard fun and thrives on progression and success

over challenge. This player type enjoys strategizing towards clear goals, but also

enjoys repetitive or similar tasks so long as they are progressing towards their goal.

There is a large shift between hardcore players and casual player types, hardcore

players are more interested in producing alternative strategies while the casual players

are interested in optimizing a strategy, not thinking of new strategies. The intuition

and thinking also produce the hardcore group of conqueror player type from the

DGD1 model. Overall, this group is very tolerant to challenge, and thus failure [11].

The Manager is a combination of the strategic and tactical skill sets, corresponding

to Bartle's Achiever type and thinking and perceiving in Myers-Briggs. Managers are

players who enjoy strategy and mastering skills. They enjoy hard fun problems, and

prefer a high correlation between their actions and the game result. This player

type is comfortable in planning and executing tasks. Managers are less interested

in mastering games, as solving them with relatively high performance. Managers

perform well in environments with immediate and long term goals which they can

plan for and react to, such as racing games. The hardcore to casual are divided by

the amount of time an individual is willing to spend planning for a task to execute.

Casual players are less comfortable with time related puzzles. Clear short term goals

help both the casual and hardcore groups promote immersion in the game [11]. The

intuition and thinking also produce the hardcore group of manager player type from
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the DGD1 model.

The Wanderer is a combination of the diplomatic and tactical skill set, correspond-

ing to Bartle's Explorer and feeling and perceiving in Myers-Briggs. Wanderers are

players who enjoy a large amount of freedom and prefer a unique experience. They are

less focused on winning or defeating a game, and more on just having easy fun. This

group is more opposed to games with perfect world information, and tend to enjoy

games of mimicry. Wanderers enjoy solving issues, without an overall plan but more

as the problems present themselves. Due to an interest in a unique experience they

are more opposed to repetitive tasks. In this group, Flow is produced when players

can choose their own pace, and perform simple tasks in an assortment of situations.

There is little known about di�erences in play preferences between the hardcore to

casual relationship of wanderers [11]. The idealist temperament is heavily found in

the wanderer player type, but is also found in the participant group.

The Participant is a combination of diplomatic and logistical skill set, correspond-

ing to Bartle's Socializer and feeling and judging in Myers-Briggs. Participants are

the largest group in the general population, yet are the least represented in the DGD1

study. They enjoy games for the social factor, to participate and be social. Little

information is available about this player type, except that they mostly play for so-

cial reasons. This particular group is thought to be interested in heavily character or

story-based games. This group is easily frustrated with di�cult challenges, as they

enjoy problems that can be adequately solved in the moment [11].

International Hobo Ltd is currently in the early stages of a second generation of

the demographic design known as DGD2. This research is based on temperament

theory described in the previous section, as opposed to the Myers-Briggs.

2.2.7 Summary of Player Types

This section has introduced information relating to players personality types, emo-

tional needs and disposition to problem solving. The research presented on player

types in previous sections contains overlapping �ndings that reinforce four general

types of players. Figure 2.7 reiterates related player information in a condensed form.
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Figure 2.7: Summary of player types, organized into sets based on similar traits from

personality research.

Although we introduced several ways of classifying players, there is less infor-

mation as to the causes of player's drift between roles as the game progressed. We

discussed progression of a player's role from Bartle's model which is that players'

roles are altered via planning of actions. Lazzaro discussed player progression as a

search for an emotional experience. Although Bartle's model may describe emotional

motivation using the implicit and explicit dimension, it does not account for frequent

or quick changes in behavior. Thus, it is important for game designers not only to

be aware of Bartle's player types, but also to identify the player's current emotional
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motivation in order to highlight situations where the player has changed game session

goals. For instance, a player who is normally a killer type could enter into the game

solely for the purpose of exploration. During this instance, the player's goal would

not be for hard fun but easy fun, thus the player model would not be correct, given

his emotional motivation.

Similarly, both Myers-Briggs and temperament theory likely play a role in map-

ping player behavior to their player type preferences. As Myers-Briggs investigates

a player's personality and how they think, it should provide insight into a concrete

personality base. While temperament theory views how an individual behaves, it may

provide insight into instances of behavior that are irregular from a normal player. As

previously mentioned DGD2 is in the early stages of research for mapping tempera-

ment theory to player types. The results of the DGD2 are highly anticipated because

player behavior is easier to monitor than thought, which will improve the ability

to classify players based on similar behavior. Whether patterns that emerge from

monitoring player behavior are capable of matching or indicating game preferences

remains to be seen.

2.3 Adversarial Algorithms

This section introduces non-learning algorithms for describing behavior in game agents.

The �ocking algorithm, discussed in Section 2.3.1, is only utilized for representing

movement of groups of non-playable characters. On the other hand the minimax and

SSS-AB* algorithms can be used to represent the optimal performance of the player

or non-playable characters.

2.3.1 Flocking Algorithm

Flocking algorithms were originally proposed by Craig W. Reynolds [37], as an algo-

rithm for describing the behavior of �ocks of birds. A boid refers to a single agent

from a �ock or group. Boids act in relation to other visible boids and under the

in�uence of several steering forces. The �rst three forces are from Reynold's original
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paper, the last two forces are recent additions to the �ocking algorithm [12].

• Cohesion: A force to bring individual boids closer together.

• Alignment: A force to direct boids in the same direction.

• Separation: A force causing boids to steer away from one another.

• Hunger: A force to direct a boid towards a speci�c goal.

• Obstacle avoidance: A force to direct a boid from a solid object.

These forces acting in unison dictate the movements and behaviors of a �ock. Flocking

algorithms are of interest to game designers because they provide an aesthetically

�natural� method of movement for large groups of objects. They also provide a method

of creating multi-agent predator tactics. Including the last two forces, hunger and

obstacle avoidance, creates a �ock with an intended goal such as tracking an opponent

and avoiding obstacles [12].

Let us consider the �ocking algorithm process for a single boid, which we will refer

to as the active boid. The �rst step in a �ocking algorithm is to obtain a list of other

boids visible to the active boid; these boids will in�uence all calculations and decisions

for the active boid. A boid's vision can be calculated via a user de�ned function which

could allow the boid to view all other boids or can attempt to imitate human vision

by allowing the viewing range to be in front of the boid with some peripheral vision.

The �rst force to be applied will be cohesion which attempts to keep the �ock closer

together. Cohesion is calculated by �nding the mean position of all visible boids and

awarding movement closer to their mean position a higher score. Alignment calculates

the position visible boids appear to be heading to based on their current position,

velocity and direction. A mean alignment position is calculated using the anticipated

positions of other boids. Then moves which minimize the distance between the mean

alignment position and the active boid's position are awarded higher scores. The two

forces discussed thus far move the �ock closer together, the separation rules stop the

�ock from colliding. The separation rule, depending on implementation, can be used
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as a short range separation or long range separation. As a short range separation

visible boids are given a maximum value in which separation is still rewarded. In this

case the reward becomes bell curved in that positions which are too close to the mean

position of the �ock and positions too far from the �ock are awarded low scores, while

moves within this interval are awarded higher values. For long range separation the

active boid simply receives a higher score for moving further from the mean position.

The hunger force can be used with a de�ned goal. Higher scores are awarded the

closer the active boid moves towards this hunger goal. Similarly, this force could be

used to avoid being eaten by another prey object by awarding low scores for moving

closer to objects we would like to avoid. While hunger forces deal with obtaining or

avoiding goals, obstacle avoidance simply deals with avoiding collision with obstacles

that are visible. If a boid's alignment is towards an obstacle then that movement

will receive a lower score, whereas movement which is towards open areas will be

rewarded higher scores. The score from each force is then normalized, and the move

which has the highest score after the summation of all normalized forces is selected.

This process is performed for each boid in the �ock during a turn.

2.3.2 Minimax Algorithm

The minimax algorithm is an adversarial search, which means that it considers both

the moves of the player and other agents during the search. The algorithm attempts

to maximize the score for the player while minimizing the score for the opponents.

In its basic form minimax is an exhaustive search, meaning it simply enumerates all

the possible moves for each agent in the game, thus choosing the best scenario for

the player to move to because it has looked at all scenarios [38]. During the minimax

algorithm, a decision tree is built from all the player's possible moves known as max

states followed by all the opponent's possible moves known as min states. One of

the key assumptions of minimax is that it assumes the opponents will play optimally.

This means that the minimax returns the best score a player can achieve in the worst

case. A player may be able to achieve a higher score, however it will involve an

increased risk of getting a lower score.
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The number of states in the minimax algorithm grows exponentially, and can

quickly become too large a search space to examine exhaustively. An easy way to

reduce the search space size is by setting a maximum depth for the search. Once

we arrive at the maximum depth, we utilize an evaluation function to evaluate the

current state of the game for the player. Alpha-beta pruning is another technique for

reducing the number of states to check without e�ecting the overall result of the game

tree. Alpha-beta allows the branching factor, which is the number of branches to be

searched to be reduced from b to
√
b [38]. Alpha-beta pruning works by storing a max

(alpha) and a min(beta) value at each level of the tree. If the player is attempting

to maximize score at this level of the tree and a value lower than alpha is returned,

the rest of that branch can be safely pruned without a�ecting the result. Likewise,

when the player is predicting the opponents move, and are attempting to minimize

score any value returned above the beta value for a min level will be pruned.

As an example usage of a minimax algorithm using alpha beta consider Figure

2.8. In this example triangles pointing up are max states and triangles facing down

are min states. In part 1) of the �gure we've expanded a path as far as possible

down the left child branches. This shows that we are examining the �rst possible

move of the player (max states) followed by the �rst move of the opponent which

produces a path of A-B-4 and a value of 4. Part 2) examines any other possible

moves for the opponent given the player's initial move. The full expansion of the

opponents moves is explored and returns the lowest score from the leaf nodes 4-5-

3, which is 3. Part 3) explores the player's second possible move and the opponent

reaction move which receive a value of 2. This is our �rst opportunity to utilize alpha-

beta pruning, where the original min-max algorithm would continue expanding the

opponents remaining possible moves at leaf nodes 1-4, alpha-beta returns the values

2 at this point because the opponent will only be looking to minimize that value.

However from the �rst branch in part 2) we know the player already is capable of

scoring 3, thus anything below 3 can safely be pruned. Part 4) expands the player's

last possible move when we expand the opponents �rst move we see a score of 4 which

is above the player's current max value, thus the opponent must try to further reduce
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that score, so the next branch is expanded which results in a score of 2. Similarly to

part 3), the rest of the opponent moves can be safely trimmed as we know the player

is going to choose his �rst possible move at A. Utilizing minimax without alpha-beta

pruning would have resulted in every node being examine in order from left to right.

With alpha-beta pruning we managed to avoid examining three nodes which is quite

a considerable improvement for this small example.

Figure 2.8: A tree described in the minimax and SSS-AB* examples.

2.3.3 SSS-AB*

The algorithm SSS-AB* is a derivation of the original SSS* algorithm. SSS* is a

minimax algorithm which dominates Alpha-Beta search in the number of leaf nodes

expanded. This means that on average SSS* expands fewer leaf nodes. In the case of

a perfectly ordered game tree both algorithms evaluate the same number of leaf nodes.

SSS* has failed to receive important practical use or the popularity of Alpha-Beta

for three reasons. Firstly, there has been confusion as to how SSS* relates to other

minimax algorithms in the academic community. Secondly, the algorithm requires
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an open sorted list of states. The overhead of sorting negates some of the value of

visiting fewer states. Lastly, the algorithm has larger memory requirements due to

sorting, and storing additional states [33].

These three problems where solved by the algorithm SSS-AB*. The SSS-AB*

algorithm works in two parts. The �rst part is the SSS* which continues looping

until the current maximum value matches the maximum value of the previous upper

bound. Each call produces an upper bound for the visited nodes in the game tree,

where only nodes below the previous maximum are expanded. Once consecutive calls

to SSS-AB* have matching upper bounds, the value of the game tree has been found.

The SSS*-AB works as a series of calls to a special case of Alpha-Beta. The special

case of Alpha-Beta occurs when alpha is initially set to in�nity-1 and beta is set to

in�nity. This results in all of the successor branches of a max state being expanded

while only the �rst min state is expanded. The resulting upper limit found by Alpha-

Beta is used as a new value of Alpha (subtracting 1), thus only values equal to or

above alpha will be expanded. This results in branches that produced the upper

limit being expanded �rst, while values that are below the upper bound are pruned

immediately. Since each call to Alpha-Beta searches the critical path (the path to

produce the latest upper bound), it expands additional min states until it �nds a lower

state or has exhausted all successor states. This expansion of min states continues at

higher levels of the tree until it is shown that no min state will produce a lower result

[33].

To provide an example of how SSS-AB* traverses a tree we review the same tree

used for the Minimax algorithm in Figure 2.8. The algorithm starts in part 1) by

coming to a max state in this state the algorithm will expand every possible move

for the player. On the �rst pass of the algorithm it will expand only the �rst possible

move on min states, which is caused by each min states value being lower than the

upper bound which is initially set to a maximum integer value, thus the �rst path is

expanded resulting in a score of 4. The algorithm then backtracks and expands the

�rst min move of state C which results in a score of 2. Finally the �rst move of min

state D is expanded resulting in a score of 4. The algorithm now returns 4 has the
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highest achievable bound which is lower than the previous upper bound of in�nity.

In part 2) we set the upper bound to 4 and run the algorithm again, which means

that min states will now be evaluated until they are below this upper limit or until

all leaf nodes have been expanded. SSS-AB* travels down the �rst move of the player

and opponent again utilizing a save table to avoid recalculating this previously visited

state of which resulted the path A-B-4. It then expands the second move from min

state A which results in a score of 5, this is above the upper bound score thus the

next node must be expanded which results in a score of 3 which is below the upper

bound, so we end our search on that branch. In part 3) state C and D are expanded

to check whether a score of 4 is possible. When it checks state C we immediately

retrieve a value of 2 which is lower than the upper bound, so we do not expand further.

Expanding the second move from state D it receives a score of 2 which is also below

the score 4. The SSS-AB* recurses with the maximum value below the limit which is

a value of 3, which the SSS* part of the algorithm checks against the previous upper

bound of 4. Since the previous and new upper bound do not match the alpha-beta

returns and checks that the critical path and �nd that no more nodes are available

to be expanded from State A and thus 3 is capable of being achieved. This example

shows how SSS-AB* traverses the tree, although the true bene�t of this algorithm is

not displayed in this example it does illustrate that SSS-AB* has expanded the same

number of nodes as alpha-beta pruning. However SSS-AB* can result in additional

costs via the need to recreate positional information of nodes. An example of this

occurs in part 2) where we must recreate the critical path to check the second path

from state B, when we had already created the majority of the environment to check

the critical path in part 1).

2.4 Machine Learning

This section introduces techniques from the �eld of arti�cial intelligence which are

applicable to video game design and current research in auto-dynamic di�culty. The

�rst section introduces arti�cial neural networks which is a machine learning technique
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for learning complex behaviors and relationships. Section 2.4.2 introduces genetic

algorithms which mimic the evolutionary process at an accelerated rate to produce a

variety of solutions. Section 2.4.3 introduces an approach called neuroevolution which

utilizes a combination of arti�cial neural networks and genetic algorithms. The �nal

section will introduce reinforcement learning which saves results from a trial and error

approach to �nd rewarding trails.

2.4.1 Arti�cial Neural Networks (ANN)

Neural nets are a method of mathematically modeling a function. Based on the

biological neural net each arti�cial neural net is composed of a set of layers, each

layer contains multiple neurons or nodes. A neuron has an input, an output and a

weight associated with it. When a neuron is given an input value, it combines it with

that node's weight and may use an evaluation function to produce an output [39].

For simplicity Figure 6 illustrates a basic feed-forward neural network where only one

hidden layer is shown, although multiple hidden layers may be used. Other types of

neural networks allow data to travel in bidirectional fashion or using loops, however

our discussion will focus only on feed-forward neural networks. In Figure 2.9 a circle

represents a neuron or node and an arrow represents an output that is used as input

for another neuron. This neural net is composed of three layers, an input layer, a

hidden layer and an output layer.

Initially, information is passed to the input layer of the neural network. Each

neuron in the input layer is evaluated and its output is passed to the hidden layer as

input which is used in conjunction with the connection weight to compute the value

of evaluation function. The corresponding hidden layer output is then multiplied by

a connection weight and passed to the output layer, as a result for this set of input.

Initially each connection of nodes contains a weight which can be set to prede-

termined or random values. To produce adequate results ANNs must go through a

training phase in which the weights of connections are adjusted to produce results

similar to the correct output to expect given a particular input. ANNs must go

through a learning a phase, there are two types of learning for ANNs; supervised and
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Figure 2.9: Example layout of ANN, adapted from [39].

unsupervised learning. In supervised learning an input is given, and the desired out-

put is known. The connection weights are adjusted to minimize the error between the

input and output. In unsupervised learning we are given input but no corresponding

output, instead the goal is to minimize a cost function dependent on the task.

One of the main reasons that ANN's have become important to game designers

is that they provide the ability to learn complex functions and relationships, which

would be di�cult for designers to model. The most frequent use of ANN's in game

development is in terms of game arti�cial intelligence. Game AI refers to the plan-

ning, actions and decisions of non-playable characters (NPC's) in a game. However

the majority of AI in the game commercial community utilize techniques which are

not recognized as AI within the research community. Commercial game AI is often

hard-coded or scripted to perform an action from a prede�ned static set of actions.

The ultimate goal of using Ann's for game AI is that it can continue to learn and

alter behavior in an unsupervised fashion during online play. However this goal has

yet to be realized with commercial games due to unpredictable and the di�culty of

unsupervised learning.
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2.4.2 Genetic Algorithms

Genetic algorithms are a machine learning technique used to explore a range of pos-

sible solutions in a domain [39]. A genome is a list of all the attributes that may

a�ect learning for a particular agent. A population is a group of agents each contain-

ing their own genome. Each population utilizes a subset of the current population

to evolve the next generation. Members of a population are evaluated based on a

�tness function. The �tness function de�nes what behaviors will be rewarded and

thus choose behaviors that are improving in terms of your de�ned goals. Members

of the population are then selected to breed based on a selection method. A variety

of selection methods exist; examples are an elitist approach where the highest �tness

function scores are chosen �rst, or a roulette wheel where an individuals chances of

being selected are proportional to their �tness score [39].

However, strictly cloning members of a population from one generation to the next

does not provide a range of results. Thus breeding strategies and mutation may occur

from one generation to the next. An example of a breeding strategy is called cross

over, where a portion of an o�spring's genome set is received from one parent and

another portion of their genome is from another parent. During the breeding phase,

mutations can occur which alter attributes of the genome set to values that are not

found in any of their parents genome set [39]. Mutation causes a further deviation

from the parents genome and the population set, which allows for new genomes to be

explored.

Genetic algorithms are a useful tool to game designers because they allow for the

breeding of a wide range of approaches to a problem. Genetic algorithms would be

e�ective in creating a population of NPCs. These NPCs could have large or small

variation in the style of play, which would promote higher levels of interest in the

player.
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2.4.3 Neuroevolution

Neuroevolution is a combination of neural networks and genetic algorithms. Neu-

roevolution is an ideal way of training both neural net weights and topology (TWEANNS)

at the same time without manual adjustment [45]. In neuroevolution, the weights and

topology of the neural net are part of the genome set where they are reproduced and

mutated as any other information in a genetic algorithm would be. Neuroevolution

combines many of the advantages and disadvantages of both machine learning algo-

rithms. The combination of the two algorithms is especially useful in cases where

paired input output test data are not available for supervised learning [2]. A few re-

cent studies have even shown neuroevolution to be more powerful than reinforcement

learning in domains that are continuous or contain hidden state information [2].

2.4.4 Reinforcement Learning

Reinforcement learning is described as learning how to map situations to actions so as

to maximize a numerical reward [46]. An agent has a set of states and set of possible

actions within each state. The agent then attempts to choose the set of actions that

will provide the largest reward. The algorithm uses a trial and error approach to nav-

igate through the environment. The agent must decide between traveling old paths

(exploitation) to obtain a reward and exploring new paths that may lead to di�er-

ent rewards. While navigating through an environment a reinforcement agent must

attempt to develop a policy that maximizes their reward [31]. Thus reinforcement

learning provides a method of comparing the trade-o� of long-term and short-term

goals, while maintaining online performance.

Reinforcement learning is only provided input via the actions of an agent at a

particular time, the response to this input is a cumulative reaction from current

situational settings. The response to an action is never clari�ed as being correct or

incorrect, thus the player will expect that their action will produce the same response

given that situational setting are the same until they have learned a possible new

response.
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Reinforcement learning is particularly useful to game designs because the training

phase is done by matching player actions to the rules within the game world, which

can be simulated to produce approximations to the actual response. Reinforcement

learning does not require the correct input to learn which is an advantage over super-

vised learning. As well, it is di�cult to produce an adequate cost function to perform

unsupervised learning.
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Chapter 3

Related Work

This section reviews current research on improving user experience within video

games. Our review begins with a general model of user interaction within virtual en-

tertainment known as the User-System Experience (USE) model. Section 3.2 delves

into a re�ned area compatible with the USE model, which is a framework for adap-

tive game systems (AGS). The AGS framework focuses speci�cally on challenge and

curiosity playability problems that were previously discussed in Section 2.1.6. Section

3.2.1 provides an introduction to the discussion and goals for auto-dynamic di�culty.

Section 3.4 introduces methods of adapting the game system from a perspective of

playability. The �nal section provides a detailed review of the three types of game

adjustments: player characteristics, level design and non-playable characters.

3.1 User-System Experience (USE) Model

To address the issues of adaptive game systems, we require a model which explains

user interaction with the system, with the goal of producing an enjoyable experi-

ence. The Person-Artefact-Task (PAT) model provides a framework which focuses on

user-interaction with a system from the perspective of optimizing production from a

person's work with an artefact. Since the major focus of the PAT model was to opti-

mize production as opposed to experience, Cowley and Black [19] felt it inadequately

described a gaming system which focuses more on playability rather than usability.

Cowley and Black felt the presentation of Flow within the PAT model was inaccurate

and could not be directly applied to games, in that it could not completely describe

all experiences with a system. Thus, Cowley and Black adapted the PAT model to

create the User-System Experience model
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The USE model provides an overview of how the user interacts with the system

and provides insight into opportunities for adaptation from a usability and playability

perspective. The USE model is capable of describing multiple types of usage expe-

riences such as when the participation is low yet the individual is still interested in

the game they may experience a state of telepresence. Unlike other models, the USE

models accounts for disinterest, participation, telepresence and variation in the level

of Flow. The USE model seen in Figure 3.1 is composed of three main components:

the internal state of the user, elements of gameplay system and the usage experience.

Figure 3.1: The USE model separates computer and game system interaction into
three sections: the player, interaction with the game system and the experience pro-
duced. Adapted from [14].

The internal state of the user can be dissected into three types of personal informa-

tion; the �rst type of information known as user typology deals with the personality

and player type of the user. Information on user typologies such as Myers-Briggs and

the DGD1, are found in Section 2.2, refers to the user's personality which includes

their preferences for which to optimize experience. The second type of player infor-

mation is physical characteristics, which are unique to each individual and must be

measured during game play. Physical characteristics would ideally be initialized to

values relating to population means and than adjusted accordingly. Finally the last
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type of player information deals with prior system experience. This means the player

has gained experience, knowledge or skills through playing other games.

The second component of the USE model is the game play system which is com-

posed of two portions: Artefacts and In-App tools. Artefacts are external methods

of communication between the player and the game, such as the game-pad or speak-

ers. The In-App toolset is essentially the game, it contains the methods in which the

player interacts and views the game world.

The third component of the USE model deals with user experience. The user

experience is de�ned on two axes: the level of engagement from the player and the

level of complexity of the task. At the lowest level of engagement the player is

disinterested in playing the game, as the player's participation level increases they

can experience telepresence, with increased participation they can experience a state

of Flow. The Flow experience can take on two forms; soft Flow or hard Flow. Soft

Flow occurs when the player has already mastered portions of the game, they're still

engaged in game play but their experience is enhanced mostly via creating internalized

challenges. Hard Flow occurs while the player is still highly involved in the learning

process and challenges are still explicit and require a high level of player's skill.

The USE model illustrates user system interaction with the goal of optimizing ex-

perience, however it does not provide a detailed description of performing adaptation

within the system. Thus the next section will introduce the required higher resolu-

tion model to illustrate the process of adaptation of the system while optimizing the

player's experience.

3.2 Adaptive Game System (AGS)

A framework for adaptive game systems was produced by the same research group

that produced the USE model. The AGS framework includes additional detail in the

process of adapting the game system to promote an enjoyable player experience. The

AGS model Figure in 3.2 is composed of two main sections: an o�ine stage outside

portion and an online stage contained within the dotted rectangle. The o�ine stage
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stores information relating to player types discussed in Section 2.2 and can be used to

identify and adapt to perceived preferences of the user's typology. The online stage

would also include information pertaining to general gamer preferences to be utilized

with their user typology. Knowledge of general gamer preferences would provide hints

as how to perform adaptation based on a user's personality and player type.

Figure 3.2: Adaptive Game System model illustrates the feedback loop required for

producing adaptive video games, which monitors then modi�es the game in relation

to expected player needs. [15]

The online portion of AGS is composed of a four stage feedback loop. In the initial

stage player performance is monitored. This information will be utilized to determine

whether the game needs to make adjustments. Monitoring player performance will be

discussed further in Section 3.3. The second stage of the online AGS performs adjust-

ments to match the system's perceived level of player desired complexity. Performing

adaptation to the game world will be further discussed in Section 3.4. Thus the adap-

tive system alters the game in a way which it believes the player is capable of handling

without demotivating the player. The third stage of the online AGS measures how

e�ective the adjustments were for meeting the proposed goal set in the second stage

of the adaptive system. The last stage of the online AGS is remodeling informa-

tion relating to the player's user typology. The adaptation occurred in response to
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a perceived discrepancy between the player's needs and the game. The adjustments

made in the second phase are based on the current user pro�le and suspected user

preferences. If the adjustments do not produce the desired response, it may indicate

that we have not correctly identi�ed a portion of the player's user typology or the

modi�ed factors do not have the expected e�ect. If the adjustments are successful

it reinforces our believe in the current player information, and provides an example

for future use. Additionally player information may change, as player types change

throughout the course of the game, as seen in Section 2.2.3 on Bartle's player types.

Thus the player model constantly needs to be remodeled, as it is also susceptible to

concept drift, which occurs as part of a natural progression in strategy or behavior.

3.2.1 Auto-Dynamic Di�culty (ADD)

As previously mentioned Auto-Dynamic Di�culty (ADD) is the adaptation of the

challenge of the game to match the abilities of the player. If the player is struggling

to progress during game play, the level of challenge may be reduced; likewise if the

player is progressing too easily, it may adapt to provide more challenge. Matching

the challenge of the game to the abilities of the player will increase their interest in

playing the game.

Although matching challenge to the player's abilities is the main objective of

ADD, it may also provide other bene�ts. ADD may mean providing more speci�c

and helpful feedback when the player is lost or uncertain of the next step. It would

recognize repetitive player locations and lack of progress in the game, and then provide

additional hints. ADD could also be used to detect imbalances in game dynamics. If

the player is consistently using the same strategy it may be the result of an unforeseen

exploit, which may result in successful play of the game, which depending on player

type this could ultimately cause dissatisfaction due to the repetitiveness of the game.

An ADD system would be able to recognize this overuse and could alter the game so

that a particular strategy is less successful [13].

A system that performs ADD should consider two main points [30]. The �rst

point is that the player should not be aware that ADD is adapting the game. If the
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player knows that the system is adapting to their playing style, they are likely to

react negatively towards it, blaming the ADD system for their failures. Alternatively

they may attempt to exploit the system by initially playing poorly until the challenge

of the game decreases. Knowledge that the system is adapting hinders a player's

immersion and sense of achievement, as it directs the players focus away from the

game and towards the ADD system. Thus it is bene�cial to altering variables of the

game that are not viewable by the player. Secondly, the ADD system should not

make large incremental changes. This helps hide the modi�cation process from the

user, as well as helps avoid drastic changes in di�culty that may cause the player to

become frustrated or bored quickly. Using small incremental changes also helps avoid

the problem of players exploiting the system by performing poorly at the beginning

of the game to lower the di�culty.

3.3 Measuring Player State

This section introduces concepts involved in monitoring player performance within

the AGS framework. Measuring the player's state deals with understanding multiple

states of the player's experience such as enjoyment and frustration.

3.3.1 Player Skill Level

Creating an accurate measure of the player's skill requires de�ning a task to be

accomplished, then rating the player's performance at that type of task. Although

tasks are somewhat genre and game speci�c, a few examples are:

• The amount of time to complete a task.

• The player's average health level.

• The number of additional items collected by the player.

• The number of opponents defeated in a level.
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However, it is easy to create a measure which appears e�ective yet is easily biased, as

some measures of player skill that intuitively appear to be adequate can be somewhat

misleading. As an example the number of player deaths and game loads [7, 30]. The

number of times a player dies might be misleading because a player may not initially

try again. Players like participants and wanderers have a lower tolerance for failure,

and play only for enjoyment; failure or defeat could diminish that enjoyment. These

types of players will have higher frustration levels at lower death totals than types

such as the conqueror who is motivated by challenge. As well, a player could quit the

game, before the system has had an opportunity to update and save measurements.

Similarly, the number of game saves/loads could be related to their playing environ-

ment as opposed to skill level. Players may be continually disrupted, or have little

time to play and thus save more often despite being skilled players.

As a result of experience and practice, the player's skill level increases as they

progress through the game. This creates a need for constant increases in the level

of challenge provided at intervals in the game. The pace of the game refers to the

rate of change of challenge, this must match the player's level of skill. The pace

of the game should occur at a similar rate to the ideal game progression. Initially,

the player �nds the game challenging but doable. Once the player masters the set

of skills for the current level of challenge, the challenge level decreases until the

player feels unchallenged by the game. At this point, additional challenges should be

introduced to stop the player from becoming bored. When challenges and items are

introduced too frequently, the player can become overwhelmed and forget the uses

of each item. Pacing the game properly has the same advantages as �just in time�

information, which gives the player information just before they need it. This results

in less information for the player to remember and positive feedback that they are

progressing correctly [7, 30].

Cowley and Charles [19] researched the predictability of measuring the player

performance in relation to the optimal performance. Ultimately, the results of their

research indicated an inability to predict performance 50% of the time. The inability

to predict player performance may have been related to using only the next square



www.manaraa.com

53

in the evaluation of optimal performance, as opposed to a multiple step look ahead.

This measurement of player skill can be used with the minimax algorithm, and may

be useful in games with smaller state spaces.

3.3.2 Emotional State (A�ective Gaming)

A�ective gaming measures the emotional state of an individual, while they are playing

a game. The main goal of a�ective gaming is to be able to identify and communicate

the a�ective state of the game player [49]. Using the player's a�ective state informa-

tion, di�erent types of content will be delivered to the player. It has been shown that

it is possible to detect the a�ective state's anxiety, arousal, engagement, boredom and

frustration through the use of physiological sensing [36, 49]. The use of physiological

feedback tools has varied in studies from the use of current game player technology

such as the game-pad, to more intrusive methods such as measuring pupil dilation.

Sykes and Brown [49], investigated whether the di�culty of a game resulted in a

player's pressing the game-pad with additional force. Their study showed an increase

in button pressure as the challenge of the game increased. However, there was no

measure of whether this extra force was a positive or negative result on the player's

experience.

Laufer and Bottyan [28], measured the galvanic skin response (GSR) of players

during a game session. Neural networks analyzing alterations in the GSR were capable

of predicting the jumping behavior of players two seconds before the jump actually

occurred. This type of information could be used to aid a player with a slower reaction

time, or to frustrate the player by lessening the amount of time they have to jump.

Rani, Sarkar and Liu [36] investigated altering the di�culty of the game Pong

directly based on performance and a�ective state feedback. Initially, using physio-

logical self-reports and task-related data, they build models of participants' a�ective

states. Task di�culty was measured to produce states of anxiety, engagement, frus-

tration and boredom. In the second stage of the experiment, the level of di�culty

would be lowered if their performance was poor or they showed high levels of anxiety.

The level of di�culty would be increased if they showed low, medium anxiety and
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excellent levels of performance. The level of di�culty was static and predetermined

by the experimenters. The result of the experiment was that players reported lower

levels of anxiety, and higher levels of performance and challenge while the game was

adjusting to their a�ective state.

3.4 Game Adjustments

This section investigates the second stage of the adaptive game system framework,

in which adjustments to the game are required to enhance the player's experience.

Subsection 3.4.1 provides an overview of the types of game adjustments. Subsequent

sections provide additional detail on each type of game element which can be adjusted.

3.4.1 Types of Adjustments

Dynamic adjustments can be either made proactively or retroactively [7]. Proactive

adjustments occur based on previous experience with a similar type of task. Proactive

adjustments are made to a task before a player has reached the task. Retroactive

adjustments occur after a player has attempted a type of task a couple of times, and

adjustments need to be made to ramp up or decrease di�culty of these types of tasks.

3.4.2 Player Characteristics

Alterations to the player's character is one method of adapting a game. It is hypoth-

esized that if the player experiences a feedback loop of action-consequence-action, the

player will develop a greater sense of embodiment with the character and this will

increase immersion in the game [15]. Player's expect their character to remain at a

consistent level or become stronger throughout the game. As a player is more aware

of changes to their character than other portions of the game, they are less tolerant

of changes that cause frustration with their control of the game. Thus, adjustments

to the player's character should be on variables hidden from the player or must be

consistent within the logical progression of the story. An example of altering the
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avatar occurs in the game Resident Evil, where as the player sustains damage, the

character's walk becomes closer to a limp and their speed is slowed to match the

animation.

3.4.3 Game and Level Design

The game environment can be modi�ed in a number of ways. The design of levels

can be modi�ed to increase or decrease the di�culty of the game. As an example in

a �rst-person shooter (FPS), if a player is struggling, the level could be designed to

include more walls in open areas to protect the player. Redesigning a level at run-

time is computationally expensive in terms of game-AI path�nding and planning, as

well as for graphics in areas such as lighting and shadows. Thus, it is more plausible

that levels could be separated into multiple sections that are prede�ned and then

recombined before the start of the level based on the player's previous di�culty with

other levels. Another way that the game environment could adapt would be by

altering the variable rate of a particular item to be given to the player. An example

of this type of inventory control is when the the player is consistently low on health,

the game could slightly increase the probability of �nding health, as opposed to other

items.

Depending on game genre, di�erent types of tasks and goals could be altered to

increase enjoyment and challenge. As an example, if a player is struggling with a

certain type of puzzle, the puzzle could be preemptively rearranged to a position

closer to the solution. Similarly, if the player is consistently seeking out a speci�c

type of objective in a game, we could increase this type of objective in the game

assuming they would enjoy new challenges or we could o�er fewer of these objectives

to promote other challenges in the game.

Along similar lines to altering the types of tasks, some researchers are investigating

personalized story content for players, where minor events within the story are altered

based on perceived player preferences [60]. This type of alteration would be useful in

providing matching side quests for players within role playing games. The storyline

progresses via a number decisions in the game that provide the player the opportunity
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to explore new development in the story. The storyline is controlled by having several

key points that all players progress toward no matter their previous deviations in the

story. This method of storyline progression provides a positive variation to gameplay

as players have unique experiences in the game, yet it allows developers to control

and limit the content needed to unfold the story.

3.4.3.1 Inventory Control

Inventory control is a method of performing dynamic di�culty adjustment via control-

ling the frequency of items the player is capable of collecting [25]. A typical example

is if a player is consistently low on health, the adaptive system would slightly increase

the probability of �nding health, as opposed to other items such as currency or ex-

tra ammunition. Inventory control is a method of adapting the game world, as it

can include altering the locations at which items are distributed. A simple method

of adaptation would be to have static locations for all items, and then to alter the

number of available items of that type in the area. A second method involves dynam-

ically selecting the location of an item, and the number available to the player. An

alternative approach is to alter the value of each pickup, as an example the amount of

health given for each item received. A �aw in the �rst method with static locations,

is it does not provide adaptation to locations where a player may need it. Thus it

is dependent on the prede�ned locations for items set by the designer. A possible

downside to the second approach where the item location is dynamically altered, is

that the player's strategy may be based on the expectation that an item will consis-

tently be in a certain location, resulting in the player feeling uncertain of the reward

for their actions and producing a possibly frustrating unpredictability.

A couple of key components of this system are: assessing when adjustments are

necessary, determining what should be adjusted and the level of change required,

and executing those changes without disrupting immersion of the player [25]. Simply

adjusting the system every time the player is in need will provide to much positive

feedback helping the player progress but destroying the challenge of the game. Thus,
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changes should only be made when a player is predicted as being in a �ailing state, and

predicted to enjoy challenge. A �ailing state is �repeated movement towards a state

where their current means, can no longer accomplish necessary and immediate ends�

[25]. Determining which item's frequency should be increased is based on immediate

player need, though this might not always be obvious as combinations of items may

be needed. Determining the level of change required is also di�cult and is often based

on heuristic functions.

Controlling the frequency of items properly allows for the game to deliver a �just

in time� item that a player may require. This technique integrates easily with a

balanced momentum path. After a certain measure of time, when a player is found

to be moving towards a �ailing state, or moving towards a losing position, it can

provide items to help the player turn the tide and regain a possible winning position

in the game. These swings in momentum should increase player interest, whether the

player is in a winning or losing position provided the swings are not to frequent or

overwhelming.

3.4.4 Non-Playable Characters (NPC)

Non-Playable characters are neutral, allied or opponent characters that the player

is unable to control during the game. NPCs provide one of the largest areas for

adaptation of a game. Allied players' movements can be altered to force the player to

attempt new strategies or to provide direction if the player is lost. The overall strength

of an allied player could be monitored to protect a player if they are struggling

or be less involved if a player is performing well. Opponent characters could be

adapted in their overall numbers, their abilities and even their basic decisions could

be altered to match the player's abilities. Since opponent and allied attributes may

not visible to the players, altering these values is easier than making modi�cations

to the player's character. The remainder of this section will review research utilizing

machine learning techniques to alter NPC's strategies and decisions and will discuss

the bene�ts and disadvantages of each machine learning technique.
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3.4.4.1 Reliable Adaptive Game Intelligence (RAGI) Requirements

Spronck [41] de�ned reliable adaptive game AI as game AI that meets eight require-

ments for online learning in a game. From this de�nition the term reliable is based

heavily on the needs of commercial game designers. Spronck divided the eight re-

quirements into two groups: computational and functional. The four computational

requirements are:

• Speed refers to computational speed, since learning occurs online.

• E�ectiveness refers to the ability to produce and di�erentiate between superior

and inferior alterations to the strategy.

• Robustness to randomness or natural variation that occurs throughout game-

play.

• E�ciency refers to the minimum number of trials required to achieve the desired

level of result.

The four functional requirements are:

• Clarity refers to the ability to understand how the game AI is behaving.

• Variety refers to di�erences in behavior, at an appropriate level of play.

• Consistency refers to a low variance between the trials needed to produce strate-

gies.

• Scalability refers to the ability to adapt to the players ability and performance.

Meeting these requirements will aid in the commercial acceptance of ADD technology.

However, there is a divide between game AI for commercial use and for academic

purposes. Commercial games are still reluctant to utilize technology that is not

strongly based on the clarity requirement, at least in terms of released product. O�ine

learning is becoming a powerful tool for game developers, in terms of decreasing
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the amount of time required to test games, as well as developing alternative player

strategies. Unfortunately, with clarity and e�ciency being two main requirements,

fewer online learning techniques can be utilized in commercial games.

3.4.4.2 Genetic Algorithm Approaches

One of the main tasks of auto-dynamic di�culty is to develop a variety of di�erent

solutions to a problem. The variety of these solutions can be used to match a player's

style and skill level. If you keep a collection of the population from each evolved

generation and their �tness function results, portions of the stored genomes will have

similarities and yet have slight di�erences in their attributes that may provide a

di�erent challenge to the player [53]. We could compare the player's previous games

o�ine to the database to narrow the range to obtain a comparable level of game AI

opponents [52]. A relevant example would be in race car games where the majority

of cars have slight performance di�erences and should be driven di�erently, whereas

scripting all these small di�erence would be tedious and a misuse of resources [39].

In the work of Togelius et al. [51], racing car tracks were evolved with the goal

of being more fun to the player. They created three �tness functions based on total

progress, speed at way points and orthogonal deviation, generations were chosen based

on a cascading elitist approach. Each of the three �tness functions contributed to the

�nal score used for breeding purposes. Their results showed the ability to evolve

tracks which were di�cult to drive and had a greater number of sharp turns for

experienced players who progressed easily through the tracks in the learning phase,

while also being capable of evolving tracks with a greater number of straightaways

and fewer sharp turns for players who averaged lower speeds and made less progress.

The downside to genetic algorithms is that the evolution process may take hun-

dreds of generations to produce acceptable results. The length of time required to

train genetic algorithms is one of the reasons that commercial games have not used

genetic algorithms in their product. In addition there is no guarantee that training

will evolve towards an optimal solution. Another shortcoming of genetic algorithms
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is that once it has evolved to a speci�c set of values, it can be di�cult to adjust or

include attributes or functionality while maintaining consistent results.

3.4.4.3 Neural Network Approaches

Neural networks provide a strong problem solving tool in problems such as classi�-

cation, pattern recognition and function approximation. Solutions to these types of

problems need to be addressed to create an auto-dynamic di�culty (ADD) system

[15]. The classi�cation of a player model would help make e�cient estimations about

where other players with similar abilities had problems. Although players with the

same level of skill may have di�erent levels of di�culty with the same problem, it

is an adequate place to begin searching. Neural nets have been successful in �nding

�normal� behaviors of usage areas such as intrusion detection [39]. As the problem

of ADD is an attempt to match the human player's ability to the challenge level of

the game, being able to recognize patterns in style of play would be useful. Once

we have recognized patterns in a player's style of play we can adapt the environment

to challenge them to develop new strategies of play. Without pattern recognition we

would be unable to discover what types of problems the player is �nding di�cult or

too easy, resulting in an inability to e�ectively customize the game to help them.

Lastly, function approximation can be utilized in terms of a GameFlow function and

other heuristics, it is di�cult to develop accurate mathematical models to express cer-

tain components of GameFlow [47] such as the enjoyment or challenge that a player

is having during game play or to predict the players expected competence during

gameplay.

The work of Wong et al. [52] utilized the idea of dynamic di�culty levels for

the use in edutainment games, which are educational games. Their work identi�ed

edutainment games as an important area for dynamic di�culty as promoting learning

at the pace of the student. The research game used student pro�les to maintain a

record of performance and used back propagation neural networks to learn behaviors

for the game given the player's rate of accuracy in answering questions. They allowed
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the player to chose a level of di�culty in the range easy, medium or hard but allowed

adaptation to occur within a range for each di�culty. Thus if at the hardest level the

player was required to accurately answer 95% of the questions, the game could adapt

to allow for accuracy 85% to still allow the player to progress if they were struggling.

Their research focused on whether dynamic di�culty was applicable to edutainment,

in which they concluded that that the real-time reaction to player's level of challenge

is the largest obstacle. However, they proposed a pre-trained database of results to

improve online performance.

The main weakness of neural nets is that creating a cost function for unsupervised

learning can be di�cult, and using supervised learning would require us to have a set

of test data to train and test on. This type of data is not only di�cult to develop but

would also be an enormous amount of data to process and thus training is too slow

for online requirements [39]. The results of training an ANN are highly dependent on

the initial test data. Incorrectly choosing an initial data set could lead to problems

with the ANN such as �nding correlation between input values that should not be

there. Other issues such as over-�tting and catastrophic unlearning can also occur.

Over-�tting is when an ANN learns a speci�c situation in the training data at the

expense of generalization. Catastrophic unlearning is when over the course of several

inputs, everything that was learnt, has been unlearned.

3.4.4.4 Neuroevolution Approaches

Since neuroevolution is the combination of two previously mentioned algorithms, it

would be possible to use it in the same situations as neural nets and genetic algorithms.

Neuroevolution would be useful in creating character pro�ling and pattern recognition

in a player's style of play. It also had the advantage of being easier to train because it

does not require correct input and output pairs, while still being capable of producing

adequate solutions and creating a large population of interesting opponents [53].

The work of Yannakakis and Hallam [54] recreated a simpli�ed version of Pac-

Man. In their experiment, ghost behaviors were neuroevolved to maximize the �tness
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function of player interest. Their formula included scoring heuristics for the number

of steps in the game, standard deviation in the time to eat Pac-Man and �nally the

level of entropy in terms of visited squares. Their ghosts utilized four inputs the

di�erence in x and y coordinates between themselves and Pac-Man, and themselves

and the closest ghost. Their genome would contain those four values as well as

connection weights. Ghosts where trained o�ine followed by tweaking in the online

stages. Yannakakis and Hallam [54] were capable of showing higher levels of interest

after online training, which was independent of level typology.

Recently a group of researchers [57] created a highly successful set of experiments

of an adaptive game system, based on the game Super Mario Brothers. Players in-

volved in the experiment played in an online setting, upon completion of their game

they were required to complete a survey. To provide adaptation, level design and

creation were parametrized based on four parameters; the number of gaps, the aver-

age width of gaps, the entropy between gaps and the number of direction switches.

The survey was comprised of a set of questions where players rated their experience

between two unique sets of level parameters in relation to one of these states: fun,

challenging, frustration, predictable, anxiety and boredom. Using the level parame-

ters and the results of gameplay response variables as input for a perceptron, they

were capable of predict player experiences based on surveys, which predicted fun

with 69.18%, challenge with 77.77% and frustration to 88.66%. In a follow-up study

they included additional states, and included multi-layer perceptrons attempting to

increase the prediction rate of their models. In their most successful model they

produced prediction rates of: fun (74.21%), challenge (79.37%), frustration (91.33%),

predictability (76.28%), anxiety (77.28%) and boredom (73.19%).

An important relationship occurs between our research and the work on Super

Mario Brothers in that their and our research are the �rst set of experiments to

include multiple gameplay response variables. The importance of extracting multiple

gameplay response variables is that it allows for emergent states whether emotional

or skill based to be described based on the contribution of sets of responses. Their

research includes an initiative to link gameplay response variables based on their
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importance to the emotional states listed above.

3.4.4.5 Reinforcement Learning Approaches

One of the main advantages of using reinforcement learning for the problem of auto-

dynamic di�culty is that it is adaptable to online performance [5]. By diminishing the

emphasis of exploration and creating additional emphasis on exploitation, learning

is minimized and thus the algorithm is better suited for online time constraints.

Another advantage of reinforcement learning is that much like neuroevolution it does

not require paired input or output for supervised learning [46]. Q-learning, a type of

reinforcement learning, has been combined with challenge functions for the problem

of ADD. A challenge function is a measure of how di�cult the player is �nding the

game. A challenge function indicates to the game controlled agents whether to choose

moves with higher or lower di�culty for the human players[5].

In the research of [5] they implemented a game called Knock'em, a real time

�ghting game in the style of Mortal Kombat or Street Fighter. In Knock'em two

combatants attempt to defeat one another, by draining the opponent's hit points to

zero. The researchers utilized a challenge function based on health. Thus, if the range

between one player's health was above 10 then the game would adapt for the player

who was losing. Rewards where based on actions which caused more health damage

than what was received. For competitions and training they utilized four algorithms:

random, a state machine or �xed strategy, an optimal reinforcement agent, and an

adaptive reinforcement agent. As could be expected the random algorithm was the

easiest and after training the optimal reinforcement agent had exploited �aws in

the state machine strategies. Their experimental results showed that the adaptive

reinforcement agent was capable of learning to play to the level of each opponent with

the largest variance in health levels occurring from the random opponent. A potential

concern with adaptive game systems is providing the ability to quickly adapt between

strong and weak players, their use of reinforcement learning demonstrated decreased

training time compared to other learning algorithms. A concern with the methodology
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used in this research is whether it maintains a consistent level of believability in

the decision process. This implementation of a challenge function is susceptible to

large shifts in the quality of decisions and thus the challenge of the game. Future

research using a challenge function needs to address the issue of smoother transitions

to improve believability. An example scenario where the challenge function provides

unful�lling gameplay is if the adaptive agent stood still if it were winning by a large

amount allowing the opponent to catch up.

The main criticism of reinforced learning for game development is that dynamic

programming is not as e�ective if the environment changes quickly as little learning

can be done if rewards may have disappeared by the time the agent arrives to that

state. However for many games this is not that large of a problem as often player

movement is the only dynamic component in the environment [31].

3.4.4.6 Dynamic Scripting

Scripts are used in games to describe the actions, behaviors and attributes of an

object. The advantage of using scripts is that they provide a clear explanation of

object behavior, and are highly adaptable. However, scripts can become quite large,

resulting in decreased speed of execution, and increased di�culty debugging [39].

Overusing scripting can result in a less compelling game world, if there is not enough

variety of events or actions. A common usage of scripts occurs in role-playing games

(RPG's) where a neutral non-playable character continually performs the same actions

and repeats the same conversation. Dynamic scripting allows changes to opponents

and other non-playable characters (NPC) behaviors during runtime.

Dynamic scripting is based on reinforcement learning, where behaviors that are

unsuccessful are punished and successful behaviors are rewarded. Dynamic scripting

can be applied to games with the following three requirements: the game AI can be

scripted, the domain knowledge on the characteristics of a successful script can be

recorded and an evaluation function can be created to assess the success of scripts

[42, 43]. The domain knowledge database from which rules are designed is usually
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hand crafted by game designers. Rules dictating the behavior of a character are

chosen online based on the probability of a weight associated with that rule. Recent

research has attempted to automatically generate scripting rules for the database,

but for the most part rules are manually edited [34, 35]. A given rule's weight is

altered based on the success and failure of that rule in previous situations. If the

rule succeeds the probability of selecting that rule is increased, and if the rule does

not achieve a positive result, its value is lowered. This process ensures that the most

challenging and successful rules have a higher probability of being chosen.

Dynamic scripting forces the player to develop di�erent sets of strategies, because

it speci�cally chooses rules that the player has struggled with. The process of increas-

ing the probability of selecting successful rules is not a full auto-dynamic di�culty

system, as the challenge continually increases. A method of allowing the level of chal-

lenge to decrease using dynamic scripting is known as di�culty scaling[44]. Di�culty

scaling was integrated in the dynamic scripting framework by restricting rules that

have continually proved to be successful against a player. Including di�culty scaling

results in database rules being pruned because of two reasons: they rarely achieve

success or they consistently achieve success. Thus the database allows a subset of

rules to be selected, these rules are within the player's capability, and should provide

a balanced result.

Game di�culty can be scaled based on three methods: high �tness penalizing,

weight clipping and top culling. Di�culty scaling proved to be e�ective at balancing

the game against a variety of static strategy opponents [44]. High �tness penalizing

awards the highest score to the technique that provided the closest competition.

Thus, strategies with the lowest variance between the players are evolved as the ideal

strategy. Weight clipping provides a window of strategies that are available; the size of

the window is based on a weight. If the weight is low, indicating low performance, the

window is made larger providing a larger variety of strategies to be chosen. Inversely,

if the weight is high, the window provides a smaller number of strategies to be chosen.

Top-culling is a window based approach where extremely successful techniques are

culled. Once a player defeats medium level strategies, higher level strategies become
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reactivated. Top-culling resulted in the lowest variance in the number of wins between

the three strategies. It was also the most successful at balancing the number of wins

against weaker opponents.

An outcome of dynamic scripting is that it adapts to continuous exploitation of a

particular strategy automatically. Without dynamic scripting, when a player uses a

certain strategy that always works, they will use that strategy to �cheat� the system.

The ability to exploit the same strategy continuously a�ects the enjoyment of player

types in di�erent ways. Conquerors and managers may experience this deviant gamer

behavior as an immediate progress method, but overall it decreases the enjoyment of

the experience, as it eliminates the need to discover new strategies and solve problems,

thus reducing the sense of accomplishment for beating a game. On the other hand,

wanderers and participants are often more interested in the development of characters

and the story. These players will gain more from progressing the story than from the

accomplishment of defeating the game in a meaningful way.

One of the main criticisms of dynamic scripting is that it requires a reduced state

and action space to meet the e�ciency requirement from the RAGI requirements [34].

This limits the use of the dynamic scripting from certain game genres with larger state

spaces. A highly bene�cial addition to dynamic scripting has been automatically gen-

erated game tactics. Typically, scripts are manually edited by programmers and game

developers; this is expensive in the number of hours required for development. Since

dynamic scripting weights di�erent scripts based on their performance, it is limited by

the number of initial strategies implemented in the rule base. This means that if the

player's abilities are outside the range of initial script strategies, dynamic scripting

will not be able to adapt to the player. Previous research by Molineaux and Ponsen

[3] built a case-based reasoning system for evaluating the e�ectiveness of techniques

for a given state and opponent. Ponsen et al. [34], investigated automatically gener-

ating game tactics through the use of evolutionary learning, where each game state

contained a corresponding available action that was related to research, economy,

combat or building. The resulting evolved tactics were compared to a set of scripts

not in the training set, in a new game world to test whether evolved tactics could
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outperform a variety of strategies. Results showed that dynamic scripting was ca-

pable of consistently defeating all but the strongest scripts, which provided an even

level of challenge for dynamic scripting.
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Chapter 4

Experimental Testbed Design

This chapter provides extensive insight into our dissection of the problem of auto-

dynamic di�culty for our research purposes. Section 4.1 provides an overview of

decisions made during the design process to reduce the problem to a manageable size.

Section 4.2 provides an introduction to Pac-Man, the testbed game selected for our

research. The remaining sections in this chapter will provide a detailed view of the

design of the game Pac-Man as utilized in the experimentation phase. Section 4.3

introduces the initial phase of the game design in which we developed and priori-

tized a detailed list of game factors that our experimentation stage would investigate.

Section 4.4 introduces strategies used to represent player behavior, followed by Sec-

tion 4.5 which introduces algorithms used to dictate opponent behavior. Section 4.6

introduces and discusses performance measures which will be tracked and used to

understand the performance as well as predicting the form of heuristics. Finally,

Section 4.7 introduces the adaptive system and its method of predicting performance

and performing adaptation. The selection of response variables to be controlled via

the adaptive system will be left until the analysis phase presented in Chapter 5 as

the selection process is dependent on the performance results.

4.1 Adaptive Gaming Architecture Design Overview

The design phase of our research is conducted from the perspective of GameFlow and

the USE model with the long term goal of studying auto-dynamic di�culty. The USE

model, reviewed in Section 3.1, provides a high-level view of user interactions with

the system. The USE model was designed speci�cally for explaining relationships

between users' experience and video games. A key feature of the USE model is the
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separation of usability and playability while being capable of describing multiple types

of usage experiences.

Within the USE model we wish to address the issue of an adaptable system; thus,

we narrowed the design focus to the adaptive game system (AGS) framework. As

discussed in Section 3.2, the AGS model is composed of four main components: mon-

itoring a player's performance, adapting in response to a player's needs, monitoring

the e�ectiveness of adaptation, and dynamic player modeling. Monitoring the player's

performance can be task speci�c, and unique to each game. Often, heuristics are de-

vised to approximate the level of di�culty the player is experiencing in performing a

task or playing the game. As explained in Section 3.3, although some heuristics may

appear as obvious factors to the level of di�culty, they can be misleading [7]. The

fourth component of the AGS model deals with the dynamic remodeling of the player

types, which ideally requires being able to identify a player's player type solely by ob-

serving game play, but could be aided by utilizing other intrusive research techniques

such as pre-game questionnaires. Our research will focus our experimental design on

two components of the AGS framework: adaptation in response to a player's needs

and monitoring the e�ectiveness of adaptation.

The main task of performing auto-dynamic di�culty is maintaining an adequate

level of challenge for the player's level of skill. Thus our focus will be on adaptation

in relation to the player's level of challenge, as well as the perceived level of challenge.

Our research will focus on the two main types of playability issues: challenge and

curiosity. Focusing on the level of challenge for adaptation purposely �lters out some

of the player's needs, such as when to provide feedback and what type of feedback.

Our focus on challenge investigates the player's current scenario and provides within-

subject information relating all of the game possible factor settings.

Our design will focus on identifying important factors for adaptation in the game

environment which could potentially be used in response to a player's known needs.

Our design focuses on being applicable to both the research and commercial com-

munities. In the research community, NPCs utilize machine learning techniques that

require a large number of training iterations in which the game usually trains against



www.manaraa.com

70

itself to produce adequate behaviors. However few commercial games are distributed

with the ability to adapt outside prede�ned tested intervals. One major issue in cur-

rent adaptable game system research is the ability to quickly adapt from a novice

skill level to an expert level. Our approach hopes to provide additional information

to help understand which factors have the greatest in�uence on the di�culty of the

game, such that the NPC's learning process could more e�ectively bridge larger gaps

in skill level. The same information could be utilized in the commercial community

by game experts speci�cally to tune factors for level design issues.

We utilized a closed experiment where adaptation occurs o�ine between simula-

tions. An o�ine setting creates a controlled environment, allowing inspection of each

game factor to occur individually from the beginning of a new game. Throughout

game play, all major game event information will be logged for evaluation. Logged

information will be utilized during a post-game analysis phase in which we will de-

termine each factor's statistical signi�cance to the level of di�culty.

4.2 Overview of Testbed Game Design

For our research purposes we have chosen to focus on the game Pac-Man. This

decision was made because Pac-Man is a well known game with simple rules, interface

and goals, yet has complex interactions in terms of group behavior. Additionally

Pac-Man is frequently utilized by other researchers in terms of generating interesting

opponent behaviors and for generating dynamic behaviors.

4.2.1 Original Pac-Man Game Description

Pac-Man is a 2D game, where the object of the game is to navigate your way through

a fully visible maze and collect all of the tokens in the level. While in the maze,

four ghosts attempt to stop Pac-Man by occupying the same square. Pac-Man and

the ghosts move one square at a time. Ghosts follow a path until an intersection is

reached at which point they will choose a new path. Pac-Man is capable of changing

direction at any point on a path. A ghost kills Pac-Man when it occupies the same
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square and the ghost is in a predator mode. Ghosts are always in predator mode,

except for a short period of time after Pac-Man has collected a power-pellet. A

ghost can be visually identi�ed as being in a predator mode when it has a vibrant

color. Ghosts will be dark blue when they are prey. While the ghosts are in prey

mode, Pac-Man can obtain additional points by eating them. Tokens come in two

forms: regular tokens and power-pellets. Power-pellets temporarily shift the balance

of power. When Pac-Man eats a power-pellet, he becomes the predator and is capable

of eating the ghosts. Pac-Man is awarded points during game play for eating tokens,

power-pellets, fruit, ghosts and completing levels. When a ghost has been killed it

slowly returns to the spawn position, and regenerates after a set number of seconds.

To progress past a level, Pac-Man must collect all the tokens and power-pellets in the

level. At irregular intervals during game play, bonus items in the form of fruit appear

on screen. These bonus items will only be available for a short time for Pac-Man to

consume to obtain extra points.

4.2.2 Research Testbed

Our version of Pac-Man works similar to the original with a few minor di�erences. Our

experiment will simulate the player's interactive role automatically via an algorithm

described in Section 4.4. Automating the player's portion of the game allows us to

simulate and perform analysis on a large number of games quickly. Similarly, ghost

behavior will be simulated using an algorithm from the ghost algorithm described in

Section 4.5. All ghosts will use the same algorithm during a session. Each agent of

the Pac-Man game (an agent is either Pac-Man or a ghost) has four states describing

their actions during gameplay. The states are: �eeing, chasing, wandering, and dead

or inactive. The original version of Pac-Man allows Pac-Man to make a directional

decision at each square of the map. Our version only allows decisions to be made

at each intersection point. The reason for this adaptation is to decrease the size of

the search space, as well as to place additional emphasis on the decisions made by

the algorithms. The modi�cation of only allowing Pac-Man to make decisions at

intersections, forces the player's play to be similar to that of the ghosts.
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In Section 4.3, we outline in detail our research parameters for the Pac-Man game.

These parameters will be altered between simulations. We believe these modi�cations

will provide an impact on the level of challenge of our game. Each simulation will run

the Pac-Man game with a unique set of parameters values speci�ed in a parameter

�le. Parameter �les contain a list of possible parameter values and whether they

are adaptable. In the experimental phase the parameter �les are only used to load

the correct parameters before the start of each simulation. The actions performed

during each game will be logged to a game �le which will be retrospectively parsed

and examined in the analysis phase of the experimentation.

Our testbed version contains limitations speci�cally chosen for the purposes of

controlling experimental results to produce comparable results. The �rst limitation

is that Pac-Man is unable to acquire additional lives within our game. This forces

situations in which each player must accomplish tasks with the same number of lives

and aids in producing comparable results. Pac-Man is capable of �nishing levels

which adds to the player's score. Upon completion of a level, the board will be reload

and agents will be returned to their initial positions to replay the same level with no

additional increases in di�culty. Our research testbed does allow for di�erent levels

to be added and played out; however, we decided to focus on playing only one board

as level design is not one of the factors that we are investigating. The board layout

for our test level is a replica of the �rst level of the original game with the exception

that the level is fully enclosed and thus Pac-Man can not transport from one side of

the screen to the other. We have limited the number of steps allowable per life to

350. This number of steps allows a player to complete up to two levels. The main

reason for using an upper bound on the number of steps is to limit a strong player

from continually defeating the same level over and over.

Bonus items will be generated at regular intervals during game play. Bonus items

will begin being generated after an initial set of 50 moves into the simulation, and

continue until the user has reached the 300th step of the simulation. In the �nal 50

steps of the simulation no bonus items are generated to ensure that Pac-Man has a

fair chance of obtaining any remaining items before the simulation is complete due
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to the maximum number of steps.

4.2.3 Object Loading

An important issue in creating an adaptive system, is creating a versatile and e�cient

method of altering and loading factors and objects at run-time. Initially, we created

a system in which an algorithm could be selected and a set of factors and their values

could be speci�ed by researchers wishing to observe simulated results. This system

would then create attribute �les for all combinations of these factors which could be

loaded at any time during game play. While this system allowed us to specify as

many factors and factor values as we wished, the process of creating all combinations

of attribute �les could be quite slow. Thus, we revamped the system to optimize

it speci�cally for the analysis phase of 2k factorial design, where k is the number

of dynamic factors and 2 is the number of levels per factor. The �rst optimization

allowed each factor and its current value to be available via a look-up table, this eased

not only the readability of these �les, but also the dynamic modi�cation process. The

next important optimization was to allow a factor to have exactly 2 levels of values.

Although this was always our intention, making it explicit allowed the loading process

to utilize a bitwise system. With these optimizations the loading process changed such

that we were no longer required to create attribute �les in the same way. The new

system allowed us to create one master �le which listed all objects and factors by a

key name followed by 2 values, their high and low levels. The master �le listed all

loadable parameters, whether they were to be dynamically altered in the game or

not. A second �le was used to specify the dynamic objects and factors we wished

to observe during the simulation. The dynamic object �le would contain keys which

matched the master �le. Following these improvements to the system, we simply

needed to pass a number between 0 and 2k-1. This number would indicate whether

the factor was in a low(0) or high(1) state. The object modi�cation and loading

portion of the system is quite simple in the new system. Each object simply has to

call the Object Loader with the key it wishes to load, and it will return the current

value of the system. Modi�cations work in a similar fashion but provide an additional
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term to replace the current value.

4.3 Game Factors

The Pac-Man testbed is designed to experiment with the level of challenge of the game

by altering game parameters and monitoring the performance results on the set of

response variables. The game environment is set up to allow for as many parameters

to be loaded as possible and each simulation run is performed with a di�erent set

of game parameter or factors values. Examples of game parameters are the agents'

speed and time on screen for bonus fruit.

In the initial stage of the experiment, we decided to investigate game parameters

which we believed would provide signi�cant results in terms of alteration to the level of

di�culty. Initially, we selected as many parameters as we could, we began narrowing

your focus of which parameters to include through discussion, algorithm selection

and small simulations. Once the parameters to investigate were selected, we selected

values for each parameter, consisting of a high and low value to make the required

two levels of 2k. The factors that we chose to investigate can be categorized into three

groups relating to agents, bonus items and algorithm factors.

4.3.1 Agent Factors

Agent factors directly relate to the attributes of Pac-Man or the ghosts' behavior.

As previously mentioned, each agent has 3 active states; �eeing when the agent is

escaping predators, chasing when the agent is a predator and can see the prey, and

wandering when an agent is unable to view any predators or prey. Ghosts can be in a

fourth state of inactivity, which occurs when they have been killed and are returning

to their spawn position on the board. The factors we selected to further investigate

control the time spent in each state and the vision range of the agent.

The factors relating to state time will determine the maximum amount of time

an agent will spend in each state, as certain actions within the game may force a

change of state. The state factors apply to all agents so the length of time spent in
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each state is consistent among all agents. Pac-Man is always in a �ee state unless

a power-pellet was collected, in which case Pac-Man will be in a chase state. In

the development of our testbed, we initially allowed game agents to use di�erent

algorithms for any of the three active states. However, during the factor pruning

process, we limited each agent to use only one algorithm for all states. This decision

contributed to the simpli�cation and organization of the algorithms for the analysis

section. The simpli�cation of the algorithm occurred by limiting each agent to use

one algorithm; it provided the opportunity to observe in isolation the performance

of each of the algorithms. Ultimately, we decided to examine di�erent factor levels

for �ee and death states, because with one algorithm, the ghost's states wander and

chase perform similar actions di�ering only on the awareness of Pac-Man's position.

The state factor �ee time (FLEE_TIME) alters the length of time Pac-Man remains

in a predatory state, potentially allowing Pac-Man to relieve stress from opponent

pressure or to be used in aggressive tactics to gain points for eating ghosts. The state

factor death time (DEATH_TIME) alters the time the ghosts remain out of the game

once they have been eaten, thus altering the bene�ts for Pac-Man's counter-attacking

the ghosts after eating a power-pellet.

The next set of agent factors relate to the vision range or the amount of the

board that agents are capable of viewing at any particular point. Agents initially

had three types of vision: complete vision of the board, direct line of sight and

surrounding area. Direct line of sight allows the agent to see as far as possible in any

of the four directions. With this vision type agents cannot see through walls. The

surrounding area vision type allows agents to view a boxed area around them, agents

with this type of vision may see past walls, but not outside their area. The vision

parameters can set a limiting vision range, which forces the size of the surrounding

box or line of sight. Eventually, our research focused on the surrounding area vision

type and chose to control the range of vision as the main parameter. The surrounding

vision type encompasses the ability to perform complete vision and provides a more

accurate depiction of how players would view the board than line of sight. Also,

the performance of the direct line of sight in initial tests of the system proved to be



www.manaraa.com

76

extremely poor.

Vision parameters play an important role in representing di�erent player abilities

and skill level. A person with no prior experience with a game will feel that there

is a lot of information to observe, and thus will only be capable of truly focusing

attention on a small portion of the board before feeling overwhelmed. As a player

gains experience and becomes accustomed to the rules of game, they will become

better at �ltering unnecessary information which will result in the ability to expand

the range of view the player can pay attention to before feeling overwhelmed. As

a player's view encompasses a larger area, they will have the ability to plan further

ahead, which is why we feel the inclusion of a vision range factor can represent a

varied level players' experiences and abilities.

A brief summary of the selected agent factors and their low and high level values

is available in Table 4.1.

Factor ID Factor Description Low Level High Level

FLEE_TIME The length of the state �ee time. 10 20
DEATH_TIME The length of the state death time. 10 20
PAC_VIS_LEN The range of Pac-Man's vision. 5 10
GH_VIS_LEN The range of the ghost's vision. 5 10

Table 4.1: Summary of the agent factors selected for the experiment. Included is
Factor ID, which is a short form name, a description and the low and high level
values of each factor will be assigned during the simulation.

4.3.2 Bonus Factors

Bonus factors relate to the bonus fruit which in our version of the game will be

generated at regular intervals in a random empty square. The three selected bonus

fruit factors are: the length of time the item is available, the perceived value of the

bonus item and the frequency at which the item will be generated. The bonus factors

can be used as a method of investigating the perceived level of di�culty. Pac-Man

is not required to collect the bonus fruit to accomplish any of the level requirements,

thus when Pac-Man plans to go for a fruit it is based solely on the decision that the

scenario provides an accepted level of risk to the level of reward. The bonus factors
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provided possible insight into the perceived level of di�culty by the player, since

obtaining the bonus item and completing level tasks could indicate that the player is

capable of moving to a higher level of challenge. The amount of time the bonus factor

is available indicates to the player or other agents whether they need to immediately

alter their plans to obtain the bonus item or whether it is out of range and should be

ignored. The perceived value of the bonus item and the frequency could be a factor

in the decision to alter the current plan to go for these items. If bonus items occur

frequently or have too low a perceived value, it may be better for Pac-Man to focus

on completing level tasks and only attempt to retrieve bonus items when little or no

change to the strategy is required. Using the perceived value of the fruit instead of

modifying the actual value of the bonus item produces comparable score results. This

resulted in the point value for eating the fruit always remaining consistent, while the

motivation of the player to obtain bonus items is being altered. The frequency of the

bonus item will alter the time interval at which the fruit is generated, either creating a

larger number of bonus items by shortening the interval or creating fewer bonus fruits

by increasing the interval. By increasing or decreasing the frequency of the fruit, we

alter the highest possible score that a player can achieve during a single session. Thus,

we controlled for this variable by splitting players into two di�erent categories based

on high and low frequency of fruit creation. This modi�cation allows the scores to

be comparable only to other players with the same fruit frequency level. The issue

of separating factors for controlling and comparing results is discussed further in the

experimental environment Section 5.2.

The perceived level of challenge is di�cult to measure and to introduce but is of

interest because it in�uences the player's decision process. If the perceived level of

challenge is too low the player may expand the number of tasks he takes on, whereas

if the perceived level of challenge is high he may attempt to accomplish fewer bonus

tasks. As we brie�y mentioned in the previous section, the level of di�culty refers

to the goals accomplished by the player; it has a straight forward measure. However,

to fully understand perceived di�culty, we need to understand what information

plays a role in the player's decisions, as well as when the player's goals change to
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focus on bonus tasks. The game Pac-Man has two types of dynamic information to

in�uence the perceived level of challenge: fruit and ghosts. In the Pac-Man game, we

know that the bonus fruit is only available for a set amount of time; thus the player

can only focus on the fruit during these times. If the player is interested in this

fruit, the perceived challenge will increase. If the player does not focus on the fruit,

the perceived level of challenge remains the same. The number of fruits collected in

comparison to the number of fruits created will indicate the proportion of bonus tasks

the player took part in and completed. The other type of information which plays a

role in the perceived level of challenge is the ghosts. The level of perceived challenge

that the player is experiencing is based on two ghost factors: their proximity and

whether they are a predator. Pac-Man is less worried about ghosts if they are far

away, or if Pac-Man is the predator. If the ghosts are close it creates an increased

amount of information to process and a higher level of di�culty to make the correct

choice, and both processes require additional time to e�ectively calculate a decision.

As Pac-Man game is a fast paced game, it means that decisions must be made quickly

to keep up with gameplay.

A brief summary of the selected bonus item factors and their low and high level

values is available in Tables 4.2 and 4.3. Technically, the perceived value of the fruit

is used speci�cally for the SSS-AB* algorithm simulations. However, it is included

here to reenforce that the bonus item value is alter only via its perceived value.

Factor ID Factor Description

PER_FRT Perceived value of the bonus fruit.
FRT_FREQ Frequency of bonus fruit occurring in steps.
FRUIT_TIME Time the bonus item is available on screen.

Table 4.2: Summary of the bonus item factors selected for the experiment. Included
is the short form name and a description of each factor.

4.3.3 Algorithm Factors

The algorithm factors are unique to each algorithm but generally provide a weight

indicating the importance of a particular heuristic or rule in the decision process.
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Factor ID Low Level High Level

PER_FRT 75 200
FRT_FREQ 50 100
FRUIT_TIME 10 20

Table 4.3: Summary of the bonus item factors selected for the experiment. Included
is the short form name, a description and the low and high level values of each factor
that will be assigned during the simulation.

These factors will be discussed in detail in Sections 4.4 and 4.5.

4.4 Player Algorithms

The player algorithms are composed of two types that provide a base level of in-

teraction from which di�erent strategies can emerge based on values of the parame-

ters. This section introduces Pac-Man's two main algorithms: SSS-AB* and weighted

heuristics.

4.4.1 SSS-AB*

As previously mentioned in Section 2.3.3, SSS-AB* is a special case of the minimax

algorithm. This algorithm was selected for our experiment to investigate a higher

level, possibly near-optimal player which is capable of surviving and obtaining a high

score. The SSS-AB* algorithm minimizes the number of states visited by the minimax

algorithm, which becomes important even in a small game such as Pac-Man. Our

SSS-AB* algorithm utilizes a search depth parameter which indicates the number of

intersection points to simulate, i.e. the number of decisions that Pac-Man has to plan

ahead. If the search depth is one, Pac-Man will only simulate paths associated with

the current intersection point to the next intersection point. However, if the search

depth parameter is two, Pac-Man would examine successor paths from the current

position, as well as connected paths from those paths. The depth of search alters the

number of intersection points to search and plan in advance. Initially, we allowed a

search depth of two; however, we eventually focused on a search depth of one after

comparing the minimal improvement in performance to the signi�cant increase in the
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run-time move selection and simulation time. The increase in the length of run-time

for a search depth of two was deemed unacceptable for our time requirements, and

certainly beyond any real-time requirements.

Pac-Man's vision range may not allow the SSS-AB* algorithm to fully simulate

all the results over the set of possible successor paths in the set search depth. In this

scenario, the algorithm will return a score that Pac-Man can achieve given a limited

view. In a similar situation Pac-Man may be unable to view all ghosts. Ghosts outside

the view range are pruned from the search space to optimize performance which will

result in a vision-based optimal solution.

A number of pruning techniques are utilized to diminish the size of the search

space. As discussed above, any ghosts not visible from Pac-Man's current position

are excluded. Ghosts occupying the same board position are counted only as a single

ghost. If ghosts are on the same path and heading in the same direction, the trailing

ghosts are removed from the search space. Finally, any ghosts whose positions make

it impossible to reach the set of possible Pac-Man paths are also excluded from the

search. This scenario eliminates ghosts that are initially visible but move outside

Pac-Man's vision range.

SSS-AB* begins with Pac-Man using a heuristic to sort the available successor

moves based on their point values, each successor move will be examined in order

from highest to lowest point value. Once Pac-Man has chosen a move, the moves

of all agents are simulated until a decision is required, i.e. until an agent of the

game reaches an intersection point. During the simulation steps the pruning methods

discussed above pruned any ghosts determined to be unin�uential for the next set

of available moves. The simulation step may end as a result of speci�c actions in

the game such as the player dying or completing the level or reaching the maximum

number of simulations steps or the maximum depth of search has been achieved.

When the next decision is required, the acting agent may be either Pac-Man or one

of the ghosts. If the agent is a ghost, the set of available moves is considered in sorted

order based on a heuristic of proximity to Pac-Man. Ghost vision parameters are

independent of Pac-Man's vision parameters. These parameter values are unknown
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to Pac-Man. As such, Pac-Man must assume the ghosts have full vision of the board

and will play optimally given their vision of the board. Assuming all ghosts are

alive and visible, the general progression of the SSS-AB* algorithm is to examine

Pac-Man's �rst move then each of the ghost's �rst response candidate moves.

The search space is further reduced by allowing Pac-Man to investigate a limited

number of paths. There is no upper bound the number of paths the ghost may

search. This restriction limits Pac-Man from planning too far ahead and utilizing too

much computational time. This results in Pac-Man's planning space being variable

length, the length can be a value in the interval of 2 to 10 squares ahead. Minimizing

the search space via depth reduction has two implications. First, the player is no

longer optimal and second, the value of potential moves must be estimated utilizing

a heuristic. The heuristic we developed uses the score the player was capable of

achieving during the current set of simulated moves, plus a score based on the distance

to the closest visible item. This heuristic focuses on the results from the simulation

with a small increment for positioning towards other edible items. The increment is

a normalized value between [0,1] to aid in tie-breaking scenarios. The heuristic may

return scores for other game results. If the player died during the turn a high negative

value would be added to the heuristic score. Similarly, a bonus value would be added

to the heuristic score for completing the level.

As previously mentioned the testbed game Pac-Man was in part selected due its

use in related research. Some of the most in�uential research are [18, 50, 55, 53]. The

algorithms selected for the player's strategy are in�uenced from their research. The

SSS-AB* algorithm was selected to represent a high level player who makes optimal

or near optimal decisions. In comparison decision theory has been used to maximize

a utility function [18]. Pac-Man was capable of planning up to �ve moves in advance

with full vision of the board. We decided to use an adversarial search, as we were not

focusing on optimizing Pac-Man's behavior but simply wanted a high level of game

play. The algorithm introduced in the next section is a combination of new rules and

rules that have proved successful in [50, 53].

A brief summary of the factor selected for the SSS-AB* algorithm is available in
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Table 4.3.2.

Factor ID Factor Description Low Level High Level

PER_FRT The perceived value of the bonus fruit. 75 200

Table 4.4: Summary of the SSS-AB* algorithm factor selected for the experiment.
Included is the short form name, a description and the low and high level values for
each factor that will be assigned during the simulation.

4.4.2 Pac-Man Weighted (PW) Heuristics

The Pac-Man algorithm introduced in this section utilizes a summation of weighted

heuristics to determine the next move of Pac-Man. Each heuristic calculates infor-

mation about the world that the agent is capable of viewing and produces a score

for that observation. Based on a sum of these heuristics a resulting score will be

produced. A cumulative score will be produced from the heuristic scores for each of

the four possible directions the agent could move, the position with the highest cu-

mulative score is selected as the next move. Each heuristic has an associated weight

this number represents its priority or in�uence for a particular heuristic. Each heuris-

tic has its own weight. In the case of a tie, a random direction is chosen from the

highest tied results. Throughout the course of this algorithm we will discuss the use

of distance. In our testbed distance was measured utilizing the Manhattan distance

function [38]. The Manhattan distance indicates the minimal number of squares used

to traverse between two positions. The Manhattan distance improves the estimates

of movement distance over Euclidean distance as Pac-Man and the ghosts can not

move diagonally. Pac-Man's heuristics are can be organized into to three categories;

edible goals, avoiding ghosts and global positioning.

Pac-Man's edible goals are based on the distance to the following set of game

objects: tokens, power-pellets, fruits and any edible ghosts. Each distance function

will be weighted to specify the goal's importance to the game strategy. As tokens and

power-pellets must be collected to progress past a level they represent an essential role

in the game. As such we expect tokens and power-pellets to be important whether

prioritized or not. Our interest in prioritizing these objects was to observe possible
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scenarios where a player would attempt to completely clear an area before moving

to the next area or would prioritize power-pellets and move quickly between them

leaving a large number of tokens behind. Pac-Man's accomplishments of eating fruits

or ghosts are rewarded in the form of extra points. In addition, Pac-Man eating ghosts

provides a strategic advantage as well, as the ghosts are temporarily removed from the

game board. The bonus fruit can be placed anywhere on the game board causing the

player additional di�culty to pursue the extra points. Weighting heuristics for each

of these four game elements potentially represents di�erent player strategies. When

the weight for tokens and power-pellets is high the player is focused on completing the

level. A high fruit weight represents a player who is seeking a higher level of challenge

from the game. If a weight for power-pellets is high, yet the token and edible ghost

weights are low, this scenario may highlight a player who is struggling with the game

and attempting to only use the predator mode to collect tokens.

Pac-Man must avoid ghosts while playing the game, thus a distance and direction

function is used for each ghost. The weights for these functions represent the player's

comfort level for approaching ghosts. The highest level weights represent a player

unwilling to head in the direction of ghosts unless absolutely necessary. A low level

potentially represents a player less concerned with the close proximity of the ghosts

positioning.

The �nal section introduces heuristic for Pac-Man's global positioning or at least

positioning based on the visible board. There are two global positioning heuristics, one

which keeps Pac-Man away from the centroid of the ghosts, and another which moves

Pac-Man towards the centroid of the remaining items. For each of these heuristics,

centroids are calculated based on visibility.

The weighted heuristics algorithm was inspired from the work of Yannakakis and

Hallam [53] and later modi�ed due to research results of Szita and Lorincz [50].

Yannakakis and Hallam utilized a greedy algorithm for Pac-Man's strategy. In their

version of Pac-Man, each square was given a value, such as 0 for squares occupied

by tokens, 10 for empty squares and 100 for squares occupied by ghosts. Pac-Man

would choose squares which minimized the value of his next move. After initial trials
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to produce a base level of performance, they included two additional rules. The

�rst improved global token consumption by moving towards the closest token if all

neighboring squares were empty. As well, they included an additional ghost avoidance

rule to help avoid traveling in the direction of visible ghosts. There were a couple of

issues not addressed within the Yannakakis and Hallam's version of Pac-Man which

needed to be addressed in our version of the game. Their version of Pac-Man did

not include power-pellets or the bonus fruits as they deemed those items to be less

important to the level of player interest. Thus our version of the game includes

additional heuristics to account for di�erent values for eating tokens, power-pellets

and fruits. Also our version allows for Pac-Man to become a predator which means

that moving towards ghosts can be bene�cial to both strategy and score.

Szita and Lorincz [50] created a list of action modules for the creation of rules

within their version of Pac-Man. Action modules are actions which will become

prioritized as a result of observations made by the player during play. For our version

we are not attempting to learn while simulating, but simply need the actions and an

approximation function for evaluating the e�ectiveness of performing each action at

a speci�c point in the game. From their results we utilized the actions from the two

most successful learned policies. The actions included are: moving towards and away

from power-pellets depending on whether Pac-Man is a predator, moving towards

edible ghosts, moving towards the center of items and moving away from the center

of predator ghosts.

A brief summary for the factors selected for the Pac-Man weighted (PW) algorithm

are available in Tables 4.5 and 4.6.

4.5 Ghost Algorithms

This section will introduce two main algorithms �ocking and weighted heuristics. The

ghost's algorithms provide a template for the decision process and each algorithm

factor provides the opportunity to customize the behavior. The weighted heuristics

algorithm performs in similar fashion to the algorithm described in the player section
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Factor ID Factor Description

PW_FRUIT_FOR The in�uence of the fruits position.
PW_TOK_FOR The in�uence of the closest tokens position.
PW_PP_FOR The in�uence of the closest power-pellet.

PW_EDIBLE_GH In�uence of prey ghosts.
PW_BADGH In�uence of the predator ghosts.

PW_BADGH_CTR In�uence of predator ghosts centroid position.
PW_ITEM_CTR In�uence of the centroid of all items.

Table 4.5: Summary of the PW algorithm factor selected for the experiment. Included
is the short form name and a description of each factor.

Factor ID Low Level High Level

PW_FRUIT_FOR 0.5 1.0
PW_TOK_FOR 0.5 1.0
PW_PP_FOR 0.5 1.0

PW_EDIBLE_GH 0.5 1.0
PW_BADGH 0.5 1.0

PW_BADGH_CTR 0.5 1.0
PW_ITEM_CTR 0.5 1.0

Table 4.6: Summary of the PW algorithm factor selected for the experiment. Included
is the short form name, the low and high level values of each factor that will be
assigned during the simulation.

with di�erent heuristics.

4.5.1 The Flocking Algorithm

As discussed in Section 2.3.1, �ocking is an emergent behavior algorithm. The �ocking

algorithm simulates the natural group movement of �ocks of birds. In the �ocking

algorithm each agent follows guidelines of the �ock and then acts in relation to the

other visible agents. The original proposal for a �ocking algorithm utilized three

rules that an agent would follow: cohesion, separation and alignment. These three

rules are covered in depth in the background section. To reiterate the important

points, cohesion is a rule that governs the group staying within a speci�c proximity.

Separation performs the opposite function where agents focus on moving away from

the group. Finally, alignment is captured by a rule which controls travel based on

the group's direction. In our testbed we have utilized another common rule which
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is hunger. A hunger rule is often utilized in predator-prey situations where a goal is

presented for the group. The goal of the ghosts hunger rule will be to eat Pac-Man.

Thus positions closer to Pac-Man's position will be given a higher score.

A �ocking algorithm works by summing the normalized scores for each of the

governing rules and combining the rule scores to form a �nal score for each of the

possible moves. Each governing rule will be a�ected by a weighting parameter, as well

as by the vision parameters. The weighting parameter will place additional emphasis

on the scoring power of a rule. The vision parameters should have an important

impact on the �ocking algorithm as behavior is de�ned via visible neighbor agents

and visible goals.

The �ocking algorithm was selected because it simulates natural group movement

especially in predator-prey relationships and is easily parametrized for adaptation.

Another factor in our selection of this algorithm was that according to Yannakakis

and Hallam [53] formula for interesting behavior, it should be capable of producing

interesting opponent behavior. This behavior arises because our �ocking algorithm

focuses on producing �uid group movement as well as accomplishing the goal of eating

Pac-Man, within the vision limitations of each agent. We feel that the adjustments

to the vision parameters can produce group behavior which is not too competitive

for the player in producing a direct attack but which enables surrounding tactics.

The strength of the attack on Pac-Man will vary depending on the group's ability to

move together, producing varied results in terms of length of life as well as high levels

of variation in terms of ghost movement across the board. The �ocking algorithm

is of interest because it provides a platform for emergent behavior. One example

of potentially interesting behavior occurs when only one of the ghosts is able to see

Pac-Man. In this situation we will observe whether the weight levels of a single agent

will be enable it to become the leader of the �ock as a result of the additional goal

to eat Pac-Man.

A brief summary for the factors selected for the �ocking algorithm are available

in Table 4.7.
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Factor ID Factor Description Low Level High Level

FLOCK_SEP The separation value of the �ock. 0.5 1.0
FLOCK_ALI The alignment value of the �ock. 0.5 1.0
FLOCK_COH The cohesion value of the �ock. 0.5 1.0

FLOCK_HUNGER The �ock's hunger value. 0.5 1.0

Table 4.7: Summary of the �ocking algorithm factors selected for the experiment.
Included is the short form name, a description and the low and high level values for
each factor that will be assigned during the simulation.

4.5.2 Ghost Weighted (GW) Heuristics

The �nal algorithm implements a strategy of weighted heuristics which is similar

in structure to the strategy proposed for Pac-Man in Section 4.4.2, but for ghosts.

Similar to the choices of heuristics for Pac-Man, we utilize other research to support

our choices of heuristics for the ghosts. Yannakakis and Hallam utilized three �xed

ghost strategies in their experiment; random, followers and near optimal [53]. Our

experiment will utilize portions of their followers and near-optimal static ghost strate-

gies. Followers are simply ghosts which continuously chase Pac-Man, attempting to

minimize the distance between themselves and Pac-Man. We include the distance to

Pac-Man as an obvious contributor, but we also include a second calculation based on

Pac-Man's current direction. Their near-optimal strategy includes an additional force

in which ghosts are repulsed by other ghosts. This repulsion forces ghosts to spread

out unless extremely close to Pac-Man. The inclusion of a repulsion calculation based

on distance to other ghosts has been selected not only because of its success in their

research but due also to the similarity of the separation rule in the �ocking algorithm.

Similar to the player strategy heuristics, the ghost weighted heuristics include

some heuristics from the research of Szita and Lorincz [50]. The Szita and Lorincz

research focuses on optimizing rules for Pac-Man's play not ghost strategies, so we

have adapted their rules to be used for ghost behavior. From their research we have

decided to use a heuristic to award points based on increasing the distance from the

centroid of visible ghosts. We have also selected a heuristic to award points based

on moving towards the centroid of the remaining edible items. In addition, we have

included heuristics similar to those for Pac-Man. They include distance functions
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and weights for each edible item in the game: token, power-pellet, and fruit. Our

belief is that including weights for each item for each ghost, allows ghosts to prioritize

protection of each item. Thus, we could produce ghosts which had a higher priority

to protect power-pellets over tokens. Likewise, if the player always goes for the fruit,

we could include ghosts which chose to protect bonus items over the regular items

for level progression. Finally, we included heuristic for moving towards the end of

Pac-Man's current path given Pac-Man's current direction.

Each of these heuristics is greatly in�uenced by the vision of the ghost. If a ghost

is unable to see Pac-Man, it will default to a protection setting, moving towards the

closest game object with the highest priority without moving close to other visible

ghosts. If a ghost is unable to see either Pac-Man or any items, its play will be

dependent on avoiding the same area as other ghosts. If a ghost is also unable to

view others ghosts, its strategy will degenerate to a near discovery state, in which

the ghost explores any path except the last path traveled in attempts to discover new

information.

A brief summary for the factors selected for the ghost weighted (GW) algorithm

is available in Table 4.8.

Factor ID Factor Description

GW_TOKEN In�uence toward protecting tokens.
GW_PP In�uence toward protecting power-pellets.
GW_FT In�uence toward protecting the fruit.
GW_PAC In�uence towards Pac-Man's position.

GW_PAC_DIR In�uence towards Pac-Man's next position.
GW_AWAY_GH In�uence away from other ghosts.
GW_TO_GH In�uence toward other ghosts.

Table 4.8: Summary of the GW algorithm factor selected for the experiment. Included
is the short form name and a description of each factor.

4.6 Performance Measures

Pac-Man's performance is measured to evaluate the level of di�culty each strategy is

having with the adaptations to game factors. All analysis will be performed after the
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Factor ID Low Level High Level

GW_TOKEN 0.5 1.0
GW_PP 0.5 1.0
GW_FT 0.5 1.0
GW_PAC 0.5 1.0

GW_PAC_DIR 0.5 1.0
GW_AWAY_GH 0.5 1.0
GW_TO_GH 0.5 1.0

Table 4.9: Summary of the GW algorithm factor selected for the experiment. Included
is the short form name, the low and high level values of each factor that will be
assigned during the simulation.

games have been simulated. We have devised several measures which are intended

to identify Pac-Man's level of task di�culty. These measures are play a role in the a

number of the heuristics created for the algorithms, discussed in detail in Section 6.3.

4.6.1 Proactive Measures

Pac-Man's performance will be measured to evaluate the level of di�culty each Pac-

Man strategy is having with the adaptations to game factors. Proactive heuristics

identify situations where Pac-Man is struggling to progress in the game prior to

failure. In the �rst part of our experiment all analysis of the proactive heuristics will

be performed retroactively, after the games have been simulated to calculate e�ects

of factors. During our experiment and analysis phases we will use the statistical

analysis terminology �response variables� when referring to the collected results of

either proactive or reactive measures. During the development of the adaptive game

in the second part of the experiment we will reuse a selection of these retroactive

measurements to proactively estimate the future performance of the player. In this

section we preview several measures which could contribute to the modeling of the

level of di�culty for the player. Our focus in this section is to highlight factors which

potentially a�ect score. We feel score is one of the most important response variables

in the experiment and is the easiest to discuss in relation to actions and consequence.

This experiment will investigate the following proactive measures:
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• Close calls occur when a ghost has come within 2 squares of Pac-Man.

• The repetition of squares by Pac-Man that contain no point value.

• The number of steps since Pac-Man has collected an object, such as a token, a

power pellet, a fruit or a ghost.

• The number of power pellets remaining on the board.

The number of close calls measure identi�es situations in which ghosts are close to

catching Pac-Man but have not been able to accomplish the task. This variable could

provide insight on how to adapt gameplay when the player has produced a high score.

A high score indicates a situation in which the level of challenge should be altered.

If the number of close calls is low, the player is likely feeling unchallenged and a

larger alteration could be made, whereas a high close calls value, indicates the level of

challenge may not need to be changed or only slightly increased due to the potential

contribution of luck. The number of close calls will be normalized via the number

of steps per life to avoid situations where one player would have played longer than

another. A summary of the expected e�ects for the close calls measure is listed in

Table 4.10. When combined with player score, it should provide a reasonable base

estimation for the perceived level of challenge and player's experience.

Tables presented in this section demonstrate the possible extreme values of the

proactive measures, and the player's score. Although the player's excitement would be

distinct for each player, and cannot be accurately assessed given only these measures,

we have included the level of excitement as a likely base emotional state towards which

the player's experience is being directed by the current level of di�culty. An impor-

tant note in terms of situations for adaptation is that providing a medium challenge or

matching challenge and excitement states may require additional observations before

adapting the game to account for the possibility of luck within the game.
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Close Calls

Low High

Score Low High Challenge High Challenge

High Frustration Possible Frustration

High Low Challenge High Challenge

Medium Excitement High Excitement

Table 4.10: Potential player experiences relating to the response variable close calls

and score

The repetition of squares which contain no point value and the number of steps

since Pac-Man collected an object indicate situations where Pac-Man is failing to

progress in the game. The repetition of squares which contain no point value indicates

that the player either does not understand how to accomplish the goals in the game

or is struggling to get to the desired location as a result of being chased by ghosts.

Repetition of Squares

Low High

Score Low High Challenge High Challenge

Possible Frustration Possible Frustration

High Low Challenge High Challenge

Medium Excitement High Excitement

Table 4.11: Potential player experience comparing the response variables repeated

number of squares and score

Likewise the number of steps since Pac-Man has collected an object indicates a

failure to obtain points during the limited number of moves. This can caused by

Pac-Man being redirected from goals via ghosts' actions or failed attempts to obtain

bonus items. As the level progresses, a greater number of squares which have no point

value will become available, as Pac-Man has already obtained the points from those

squares. Thus Pac-Man will have to traverse a larger number of squares to obtain the

remaining tokens. This will increase both the repetition of squares and the number
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of steps since the last completed task. The two measures, repetition of squares and

moves without eating, were selected because they both directly a�ect the player's

overall score and the number of tokens collected.

Time since goal accomplished

Low High

Score Low Medium-High Challenge High Challenge

Possible Frustration

High Low Challenge High Challenge

Medium Excitement High Excitement

Table 4.12: Potential player experience reviewing time since goal accomplished and

score.

The number of remaining power-pellets could be an important measure due to

the fact that eating a power-pellet alters the ghost strategies. The presence of power-

pellets allows Pac-Man to turn the ghosts into prey which allows the player to obtain

more points for eating the ghosts. In addition, it allows Pac-Man to protected for

a short period of time and get out of dangerous positions. The presence of power-

pellets alters the optimal strategy of the ghosts, in that the ghosts should not converge

when Pac-Man is closer to a power-pellet. Likewise they should disperse as quickly

as possible as prey when in close proximity to Pac-Man to avoid being collectively

eaten. The presence of power-pellets allows Pac-Man to use a wider set of skills when

no power-pellets are present. If no power-pellets remain on the board Pac-Man must

avoid ghosts purely on skill, but when present, power-pellets o�er the opportunity to

be more strategic by setting traps or attacking dangerous areas of the board.

4.6.2 Reactive Measures

Reactive heuristics indicate the level of success the player had in collecting items and

staying alive. The following reactive measures were used to evaluate the player's per-

formance and to gauge the level of di�culty had during game play. It is important to

note that in the context of adaptive gaming we will use the term reactive measures.
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However, during our experiment and analysis phases we will use the statistical anal-

ysis terminology �response variables� when referring to the collected results of either

proactive or reactive measures. The reactive measures are:

• the number of steps

• the number of tokens, power-pellets, and fruit collected per life

• the number of ghosts eaten.

• the number of levels completed

• the overall score of the player

The number of steps can be utilized as a measure in two ways. If Pac-Man does

not complete the tasks with a low number of steps, the di�cultly may be too high,

whereas if Pac-Man completes the tasks with a low number of steps, the task may

be too easy. Likewise, a high number of steps with a high score may indicate that

the player's performance is balanced with the current level of challenge, which may

require small tweaks or no change at all. In this case the player accomplished a high

number of tasks, plus possibly bonus tasks or was heavily chased but still managed

to avoid ghosts.

The number of tokens that Pac-Man collects during a turn indicates progression

toward level completion. However, for each successive life, Pac-Man has fewer tokens

to collect on the board, unless a level is completed. The mean number of tokens

collected was used in Yannakakis' interest formula [53]. When the mean number of

tokens collected varies, this variation indicates that the player is experiencing di�erent

actions in game play, which may mean the player is unable to learn a single strategy

to complete a level. Thus, Pac-Man should be capable of obtaining a relatively equal

portion of available tokens each game. Slight deviations are expected for each turn

in the number of items collected, thus a general behavior must be observed as an

indication of the level of challenge. Likewise, the number of fruits obtained indicates

that Pac-Man is capable of achieving additional game goals. Fruits are valuable
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items obtained during game play. However, obtaining this bonus item will require

backtracking and delaying the goal of level completion. Finally, the overall score

of the player indicates whether he was successful in progressing in the game. This

heuristic is often used in other research [25, 53], especially those utilizing machine

learning to model a NPC's behavior.

4.7 The Adaptive System

4.7.1 Overview

The �nal phase of our research will use the information gained in the factorial analysis

stage of our experiment to develop an adaptive game. In Section 3.2, we noted that

an adaptive system requires a feedback loop which performs the following: estimates

the player's progress, identi�es a required level of change, and adapts factors of the

game to meet that requested level of change. Our adaptive system is composed of

three main components: heuristics, player modeling and system management. The

heuristics predict the player's performance for the values of the response variables

based on recent gameplay and the player model. The player model stores the infor-

mation acquired about a particular player during the simulation phase. Player model

information includes: the e�ect of each factor setting to a particular response variable

and the game statistics the player was capable of achieving per game and per life.

The player model decides which factor settings will best suit the requested changes

to the level of challenge. The system also manages the adaptive process, runs the

heuristics, requests adjustments to the factor settings and implements the changes to

the object loader and the game objects.

4.7.2 Adaptive Pac-Man

Our adaptive system is a feedback loop which functions by allowing opportunity for

adjustment every �ve moves. Whether adjustments are necessary or not is determined

by the heuristics. The system begins with the researcher specifying the desired target
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interval for one or more response variables, this provides a target upper and lower

bound for the adaptation progress to direct toward. We created a unique heuristic to

estimate the potential performance in a response variable over each life. The key to

an e�ective adaptive game system, lies in its ability to accurately predict the player's

performance and progress. Any inaccurate information or estimates could cause factor

selection which result in disastrous changes. During gameplay the adaptive system

will attempt to maintain the selected response variable in the designated zone, or have

the �nal result �nish within that zone. The main loop of the system creates estimates

based on the heuristics for each response variables the researcher has chosen to control

and adapt. The player model uses the estimates and the size of e�ect information

from the factorial analysis stage to develop solutions to all the factor settings. Factor

settings are the combination of several values from our analysis. They have three

pieces of information: a list of factor names, an ID number between 0 and 2k − 1

where k is the number of factors used by the object loader to set the necessary

parameter information and lastly the total e�ect size which sums the combination of

all active terms e�ect size in the current setting. The resulting factor settings will

have an e�ect value equivalent or close to the di�erence between the current estimated

result and the prede�ned interval.

The previous phase of the experiment calculated each response variable for all

the factor settings and sorted the results based on the e�ect size, which allows quick

retrieval for adaptation. Factor settings are �rst selected by minimizing the di�erence

between the potential e�ect sizes and required change size. Once a set of suitable

factor settings are selected, factor settings which reduce the number of modi�cations

required to the current factor settings are given priority for selection. Selecting factor

settings which minimize the number of alterations is important for two reasons. One,

it minimizes the number of objects to modify, which results computational requires

less work and two, it decreases the chance of a drastic change in gameplay which may

greatly alter the di�culty and draw unwanted attention from the user. Finally, the

system must modify the game objects with their new factor settings, which is greatly

simpli�ed by our initial factor loading system. This process continues throughout the
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life of Pac-Man to form the feedback loop for the adaptive game.

Utilizing the statistical tools built for the factorial analysis stage of the experiment,

the researcher can collect the results of the adaptive simulated game. The researcher

will analyze the collected data to identify the situations in which the adaptive system

has improved the number of results within the speci�ed target intervals. Although we

are manually setting the target intervals for response variables to be adapted, that

information could easily be coming from another system which could be controlling

the rate of adaptation or desired level of challenge to produce a true adaptive system.

We believe controlling and adapting the game based on a very simple set of heuristics

and adaptive system setup demonstrates that this methodology provides a positive

step towards building a complete adaptive gaming system.

4.7.3 Heuristics

Pac-Man is frequently used as a testbed for game and arti�cial intelligence research

due to its simple interface, yet complex and emergent interactions. Despite the simple

interface, it can be a highly involved process to produce e�ective heuristics for Pac-

Man that estimate the future performance or the current struggles of the player.

The challenging part of creating an e�ective heuristic to estimate di�erent response

variables in Pac-Man boils down to two major issues. The �rst issue is that Pac-Man

has only 1 health unit, as soon as a ghost occupies the same square, Pac-Man's life

has ended. This requires identifying life threatening situations before they occur and

while Pac-Man still maintains the opportunity to escape, which necessitates having

a good player model as well as e�ectively evaluating the strategic position of the

board. The second issue is that scoring progression is non-linear. The player's life

can progress without scoring additional points and this situation may or may not

re�ect any additional di�culty for the player. This situation could be explained by

attempting to collect a fruit, to backtrack for a missed area or attempting to avoid

chasing ghosts.
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4.7.4 Limitations

As a large amount of additional work is needed to develop a fully adaptive system,

we limited our adaptation system in several important ways. In our proof of concept,

we did not focus on the rate of alterations. Instead, we set a constant time inter-

val at which the adaptive game could check whether the game required adjustment.

Ideally, an adaptive game system would gradually increase or decrease the di�culty

in subtle ways over a period of time. Subtlety is not a major issue for our users in

our research, as we have no human players. However, the downside to the lack of

subtlety is that since player progression estimates are calculated based on heuristics,

the amount of adjustment requested can be quite di�erent from one estimate to the

next. This can lead to large swings in factor levels, that may cause inaccurate or

irreversible results. We allowed the adaptive system to alter as many factors as it

deemed necessary, although the adaptive system places an emphasis on choosing fac-

tors settings with minimal di�erence from the current settings, after a set of possible

solutions is produced.

Additionally, we limited the factor settings to values we had previously experi-

mented with in the other experimental stages. Our experiment allowed each factor to

have 2 levels, a high and low value. These were the only acceptable settings during

the adaptive system testing. This simpli�cation allowed us to avoid interpolating the

e�ects of factors and the response variables. We consider this simpli�cation to be a

similar methodology to what a commercial tester might use when a game cannot be

shipped with potentially unseen behavior. As each experiment has 10 factors, this

limits choices to 210 or 1024 possible factor settings.

A goal of dynamic di�culty systems should be to create interesting behavior, in

addition to appropriately matching the player's ability to the level of challenge of the

game. Creating interesting behavior was not a focus of our prototype, as we simply

attempted to control the result of the response variables. Adding functionality to

create this behavior would be relatively simple although game speci�c. We could

de�ne a function that selects factor settings based on a function of interesting or
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diverse behavior in combination with minimizing the distance between factor settings.

This functionality could also be added by including interesting or diverse behavior as

one of the response variables which are calculated in the analysis phase.
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Chapter 5

Experiments

The experiment has been designed with two main goals: the initial goal is to investi-

gate a methodology for identify signi�cant factors relating to the level of challenge of

the game. The secondary goal is to test and develop an intermediate step progressing

toward the larger goal of a fully functional auto-dynamic di�culty system in video

games. As previously stated, the main component of auto-dynamic di�culty is to

automatically adjust the level of challenge to the player's level of skill. To determine

the full e�ect of a game factor and its signi�cance for the response variables, we must

view the e�ects of that factor in isolation, as well as in relation to other factors to

discover possible emergent e�ects. Di�erent player strategies will be a�ected by the

game factors in di�erent ways, thus we must explore each game factor's e�ect in re-

lation to a number of player strategies. Using a number of di�erent player strategies

increases the potential of representing di�erent players types.

Section 5.1 provides a brief introduction to factorial analysis, which is our eval-

uation method for identifying factors with signi�cant e�ects on the results of the

response variables. Section 5.2 provides a detailed view of how the experiment was

speci�cally designed for the Pac-Man game. In addition, this section introduces the

methods of analysis utilized to calculate the results and provides an overview of the

purpose of each method. Section 5.3 observes the results of the analysis sections, a

summary of the experiment is provided in Section 5.4.

5.1 Factorial Design

The analysis for the results of the factorial experiment identi�es factors and factor

interactions which signi�cantly a�ect the response variables or explain a portion of
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the variation of a response variable. A response variable is a reactive measure or

a collected result in response to an activity during the experiment. In our research

our response variables are performance measures, listed in Section 4.6. For these

simulations, we will utilize a full 2k factorial design, to identify the variation created

by each factor level. The factorial design will allow us to compare factors and to rank

them based on their impact on the set of response variables. Ranking the factors

provides a priority guideline for which game parameters could be altered based on

the needed level of di�culty.

We have selected a 2k factorial design, because it will determine the e�ect of k

factors also known as main e�ects, each of which has two values in the experiment

also known as levels. The levels of a factor are coded to values of −1 indicating

the low level and 1 indicating the high level. The 2k analysis is a simple theoretical

analysis method that can provide human readable results, and allow factors or the

interaction terms of multiple factors to be estimated. An additional property of the

2k analysis is that factors can be added to the model of the analysis without the need

to rerun previous games setting, only running required games with the new value.

Determining the e�ect of each factor will allow us to order the factors based on their

statistical signi�cance. To evaluate an experiment with k factors at 2 levels, we must

perform 2k experiments. Interacting factors, are factors in which the resulting e�ect

of one factor is dependent on the value of the other factor. The experiment will

produce
(

k
n

)
n-factor interactions, for example it will produce k main e�ects for each

factor, and
(

k
n

)
2-factor interactions, etc.

To demonstrate some of the properties of 2k factorial design, for simplicity we

provide an example from [27] for a 22 factorial design, the ideas presented here and

in Table 5.1 directly extend to the 2k experiment. The 2k design works by creating a

signed table for all of the factors and all combinations of interactions. In the case of

22, the two main factors A and B will be considered. We have included the identity

column (I), as well as a column for the interaction between A and B shown as column

AB. Since there is only two possible values or levels for a factor we represent the low

level as −1 and the high as 1. The AB value for each row is calculated by multiplying
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the row values of A and B together. In an example with three factors the interaction

ABC would be the combination of the column values A*B*C from that particular

row. The Y column represents our response variable from the experiment. Each row

represents a run of the experiment where A and B use coded values and Y is the

result of a response from that run. In later sections we will refer to the ideas of a

signed table and an interaction table. A signed table will refer to the portion of the

table with main factors A and B. An interaction table will refer to the interactions

of those factors such as the AB column.

I A B AB Y

1 -1 -1 1 15
1 1 -1 -1 45
1 -1 1 -1 25
1 1 1 1 75
160 80 40 20 Total
40 20 10 5 Total/4

Table 5.1: Example 22 Design Experiment Table [27]

The total for each column is calculated by summing the factor values of each

row multiplied by their Y column, also known as the dot product of the two column

vectors. For example column A's total is 80 which is calculated by A · Y or (−1 ∗

15) + (1 ∗ 45) + (−1 ∗ 25) + (1 ∗ 75) = 80 [27]. The total values are divided by 2k,

in this case 4 to produce the coe�cients for a regression equation. The column titled

I produces the coe�cient of the regression equation. In this example the regression

equation would be ŷ = 40 + 20xa + 10xb + 5xaxb, where xa and xb represent possible

row values of the A and B column respectively. The symbol ŷ indicates that a model is

�tted. the A regression equation is an equation that models the relationship between

variables. Regression analysis is used to �nd dependent and independent relationships

between variables. An important property is that the signed and interaction tables

can be reused for analysis that have the same number of factors. Using this property

we reused an interaction table with 10 factors in our experiment. Another important

property is that coe�cients of the regression equation can be calculated independently,

using the columns of the interaction table.
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5.1.1 Calculating Variation

To identify the importance of each factor, we must measure the variation of a factor in

relation to the total variation. The total variation, also known as the Sum of Squares

Total (SST ) for the 2k experiments, can be calculated in the example by the formula

SST = 2k(q2
a +q2

b +q2
ab), where qx refers to the coe�cients of the xth column from the

regression equation retrieved from the design table [27]. If we would like to calculate

the variation for a single factor we can do so via the following formula X = SSX
SST

,

where SSX is the variation for any factor, and is calculated by 2k ∗ q2
x [27].

Variation indicates the ability and force of a factor to modify a response variable

of a game. It is important to identify the variation as it indicates how important the

change in the game could be. In addition, it provides the adaptive system with a

range of values to focus on for selection in the adaptive process. The perceived level

of required adaptation is an estimate of the player's needs, estimated by the adaptive

system. If signi�cant adaptation is required, the adaptation process will investigate

factors with higher variation values �rst. As the perceived level of required adaptation

shrinks, factors with smaller variation will be adapted to tune the game more precisely.

5.1.2 2kr Factorial Design with Replications

To stimulate player's interest the game should provide slight variation in gameplay.

Thus the same actions should not occur in the same order every time the player

plays the game. Gameplay will �uctuate as a result of di�erences in player tuning

their strategy and the presence of luck. Since variation should occur naturally in

gameplay, we need to account for this by repeating the experiment with the same

factor level to produce means of observed e�ects. Performing replications also provides

the additional bene�t of being able to calculate an error term for the experiment as

well as con�dence intervals.

The 2kr factorial design is comparable to 2k factorial design with r replications,

the addition of replication means the performance measures are now calculated as a

mean of all games played with the same factor levels [27]. In our experimentation
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r was set to a value of 3, that is each simulation ran 3 times with the same set of

factor values. Each run included a single Pac-Man game containing three lives. The

error term is calculated as the sum of squared errors (SSE), which can be used to

estimate variance and compute con�dence intervals. The measured response value

is the observed results of the experimentation process or the resulting performance

measure, represented by the value Yi, where i represents the i th replication. The

estimated response is the mean or average of the Yi values. SSE is calculated by the

formula SSE =
∑2k

i=1

∑r
j=1 e

2
ij [27]. The error term eij is calculated as the measured

response value minus the mean response. The formula for SST is similar to 2k factorial

design, but now includes theSSE term. The inclusion of the error term SST for 2kr

is given by SST = 2kr(q2
a + q2

b + q2
ab + ....) + SSE [27].

5.1.3 Calculating Lack of Fit

As the number of factors in the experiment increases, the number of interaction terms

increases combinatorially. However, most high level interactions are unlikely to be

signi�cant factors. Additionally, our model will be limited to containing a maximum of

127 terms. Thus, our analysis requires an additional test to ensure the terms excluded

from the model are not contributing signi�cantly to the results of the experiment. This

information is calculated using the lack-of-�t test and the pure error term. A full 3-

factor model is given by SST = 2kr(q2
a+q2

b +q2
c +q2

ab+q2
ac+q2

bc+q2
abc) [27]. To calculate

the lack-of-�t, one or more terms must be excluded from the model; we can exclude

any term except for the main e�ects. As an example we could remove all 2-factor

interactions resulting in the model estimate equation SST = 2kr(q2
a + q2

b + q2
c + q2

abc).

After calculating the qx coe�cient values the new model equation estimates the value

of the response value Y , given the experiment input values a, b, c; this estimate is

known as the �t value. The residual is the di�erence between the actual experiment

run value of Y and the estimate of Ŷ . The residual error can be calculated by taking

the sum of squares of the residuals (SSRE). The Lack of Fit value is calculated by

SSLOF = r
∑2k

i=1(Ŷ − Ȳ ) [27], where Ŷ is the �tted value and Ȳ is the mean of the

experiment runs. The pure error can be calculated by SSRE − SSLOF , and we use
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pure error sum of squares (SSPE) to calculate the signi�cance of the lack-of-�t.

The statistical signi�cance of the lack-of-�t value is calculated by �rst calculating

the F-value and then looking up the P-Value or signi�cance. The F-Value is calculated

by F =
SSLOF/DnF

SSPE/DdF
, where DnF is degrees of freedom of the numerator and DdF is the

degrees of freedom of the denominator. The DnF is the number of terms excluded

from from the model; in our example DnF is 3. The DdF is the degrees of freedom

of the denominator (r − 1)∗2k.

5.1.4 Factorial Analysis and Experiment Design

Initially, our evaluation of the experiment intended to do a complete factorial analysis

of both Pac-Man and ghost factors simultaneously. Ideally, having both sets of factors

in the analysis would provide insight into how to improve the tactics of both the player

and opponents. However, this led to high k values (maximum of 20) which could not

be analyzed utilizing commercial statistical programs such as SPSS or Minitab due

to memory limitations. The commercial software was capable of doing a full factorial

analysis for a maximum of 8 factors, which was well below our desired interval. To

compensate for this large amount of factors we began investigating other methods of

analysis based on fractional factorial designs.

The �rst issue of fractional designs for our experiment was confounding, in which

the value of some of the e�ects cannot be determined, only the combination of their

in�uence can be. This was potentially a large issue for our experiment as we required

the knowledge of how each factor e�ected the game. The intent for an adaptive sys-

tem is to keep changes minimal and subtle, the factors can not be separted we risk

drawing attention to the adaptive system because we must change a higher number of

factors, it also increases the risk of altering an unintended aspect of the game. With

confounding of factors we potentially diminish the ability of the adaptive system to

perform more detailed adjustments. The second issue of using fractional designs for

our experiment was that fractional designs are based on the assumption that higher

order interactions have small e�ects. However, our algorithms were speci�cally se-

lected with the intention of producing higher order interactions and emergent behav-
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ior. Intuitively we suspected and then later observed in early runs of our experiment

that the algorithms we selected based on producing emergent behavior would pro-

duce higher order interactions with large e�ect values. A �nal reason why fractional

designs were not well suited for our study was that the advantage of that method is

removing a non-signi�cant factors during the early stage, although this method could

be used to identify insigni�cant factors to be removed our intention was to retain all

factors throughout the process in case they were signi�cant to other factors settings

or players.

Ultimately, the inability to use either large values with a full factorial or frac-

tional factorial design led to the restructuring of the problem space to create a more

manageable size. Thus we restructured the problem by dividing the players factors

and the rest of the game factors into subsets, thus creating groups with manageable

factor sizes. We separated each algorithm set into groups of 10 factors, which was still

above the commercial term limit of 8. However, by exploiting the properties of full

factorial design, we were capable of developing our own program that would initially

allow us to investigate up to 15 factors. The separation of factorial design is one of

the use properties we utilized to perform our analysis. For instance, if the design had

12 factors the separation of the design to 10 factors would create 22 or 4 cases. In

these 4 cases, the values of the 2 separated factors are implicitly de�ned in the model.

Table 5.2 illustrates the implied values of the 11th and 12th factor in each case. In

this example, each case produces its own model, which results if 4 models and every

term having 4 values. The limitation of separating the design is that we do not have

access to the intersection values of the separated factors. Thus the main e�ects and

any interactions between factors and factor 11 or 12 are unavailable, unless the design

is reconstructed.

We selected to use groups of 10 factors for several reasons, the �rst being that

our initial factorial analysis with higher factors values showed very low R-Sq results.

This was partial due to a limitation of the commercial software which limits the

model to a maximum of 127 terms. Secondly, grouping to 10 factors drastically

decreased the computational time required to perform the analysis. The decreased
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Factor 11 Factor 12

Case 1 -1 -1
Case 2 1 -1
Case 3 -1 1
Case 4 1 1

Table 5.2: Example of separating the factorial design, the values of factor 11 and 12
are implicit applied to the model's coe�cient and terms.

results of the R-Sq values was expected because as the number of terms increases

the commercial limitation of 127 factors becomes a greater constraint, as additional

signi�cant e�ects may occur outside the top 127 terms. Our program utilized the

fact that terms e�ects can be independently evaluated using the e�ects table and

the response variable. Using this property we avoided the expensive computation

memory problems at the expense of computational speed. The e�ects and sum of

squares (SS) where independently calculated then recombined and sorted to de�ne

an ordered list of the terms with the greatest e�ect on a speci�ed response variable.

We loaded the ordered terms into our commercial software (Minitab) for this project

to calculate the signi�cance for the terms and R-Sq values for the model. At this

stage, we encountered another limitation of the commercial software, Minitab could

only included a maximum of 127 terms per model. Although our experience with

SPSS allowed a model to load above 200 terms, even performing analysis on models

with 127 terms in SPSS took signi�cantly longer. This limitation occurs only for the

commercial software as we are capable of including all terms into the adaptive game

models. However, despite the limitation of 127 terms per model we still produced

adequate R-Sq values for the algorithms. Depending on the results of the lack-of-�t

tests the terms excluded from the model may not to contribute signi�cantly to the

experiment results, and thus 127 term could produce adequate models.

The restructuring of the player factors created a couple of advantages on top of

allowing us to complete the analysis. This organization allows each session to be

treated as an individual player, and eases the creation of models for the adaptive

models of each algorithm. The factor separation allows for an e�ective method to

investigate alterations to game objects or game design that are too large or noticeable
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to be included in the adaptation process, such as level design changes or attributes

that are viewable to the player. The separation also allows us to organize and observe

player information in a similar fashion to how it would be received in an online setting,

which is a potential logical progression of this research. In addition this organizational

system is better suited for extracting player information, which will be demonstrated

in the proof of concept adaptive system.

5.2 Experimental Environment

The experiment was designed to ease modi�cation and loading of any of the param-

eters of the Pac-Man game. In addition the game loaded a number of experiment

arguments when the game was �rst run, which included information such as the level

to load, the maximum number of simulation steps, the number of ghosts to use and

the ID of the game to run. The ID of the game indicated which dynamic and attribute

�les to load, such that each simulation could run independently and simultaneously.

Given the ID of a game all the information was calculated or retrieved to simulate the

game with all the correct factor information. Each experiment run would simulate

Pac-Man games with three lives, and use a repetition value of three. Throughout the

course of the experiment runs every action in the game would be logged in an XML

format for post-game analysis.

5.2.1 Response Variables

The �rst step upon completion of the simulation portion of the experiment was to

use a set of error checking tools to ensure the required number of games had �nished

running, the correct number of lives and the correct factor values were also checked.

The next step included parsing, collecting and preparing all of the information needed

from the XML �les, the most important of which was to accumulate the values of

the proactive and reactive performance measures. Throughout this chapter the term

performance measures will be referred to by the statistical terminology response vari-

ables. This section uses the statistical terminology response variables, which speci�es
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the collected results of the performance measures discussed in Section 4.6. The re-

sponse variables we selected for this experiment are: 1: score, 2: number of steps,

3: number of close calls, 4: number of repeated steps, 5: number of fruit created, 6:

number of fruits collected, 7: number of tokens collected, 8: number of power-pellets

collected, 9: number of ghosts eaten and 10: the number of levels completed. Addi-

tional information about the selection of response variables can be found in 4.6. The

number of fruit created will be excluded from the �nal analysis as fruit are created

at set intervals depending on the number of steps.

5.2.2 Factorial Analysis Customizations

Once all the information was collected we organized speci�c experimental runs into

groups to be able to proceed in the evaluation process for the restructuring reasons

discussed in Section 5.1.4. Once the data were separated and organized we began

preparing for the factorial analysis stage, which was partially customized for the

large number of factors in our experiment.

The �rst step was a one time preprocessing step which calculated the interaction

table for all factor interactions. The process begins with creating a full signed table

from 0 to 2k−1 for the 10 main factors for each experiment, except that 0 is replaced

by -1 for the purpose of multiplication. Next, an interaction table is created for every

possible combination of those factors, each cell in the interaction table is calculated

by multiplying values from the signed table row by the column values of the term.

For example if the interacting term was A*B*D*J and row 0, we would multiply

columns from the signed table A by B by D and then by J the results of which are

placed in column ABDJ. In row 0 all factor columns contain -1 representing 0 thus

the result of the multiplication would be 1. As we organized the factorial design

into groups with 10 factors the interactions table and factor table are reusable for

each experiment, thus process is only completed once for the entire experiment. Part

of the customization that allows an analysis on a greater number of factors than

the commercial software occurs in this stage, as each column of these interaction

tables and the response variables represents all the calculations required to determine
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the e�ect and SS value of a factor on a particular response variable. This enables

terms to be calculated independently reducing a computationally expensive step into

smaller pieces which can be reassembled upon completion because all model terms

are orthogonal to each other.

Using the interactions tables and the response variables computed in the organi-

zation portion of this experiment, we calculate the e�ects and sum of squares (SS) for

every possible combination of factors. The coe�cients for a regression equation are

calculated by taking the dot product of the factor's column vector from the interac-

tion table and the response variable column followed by dividing by the number rows

in the columns which will be determined by 2k . The e�ect of a term on a response

variable is calculated by multiplying the coe�cient of the regression equation by 2.

The sum of squares for each factor is calculated by 2k ∗ q2, where q is the factor's

coe�cient of the regression equation. Once all the e�ect sizes and the SS values for

each term are calculated, we sorted all the terms based on the SS values, so that the

top 127 terms could be selected for use in the commercial software portion of the

analysis. The phrasing �selecting the top 127 terms� can be somewhat misleading in

this case, as a requirement of the software was any main e�ects which contributed

to a signi�cant interacting term was also required to be included in the model. As

an example if the term A*B*D*J had one of the highest SS values, all four ID's A,

B, D and J would need to be included in the model whether they where potentially

signi�cant or not. Main e�ects that were required to be in the model, replaced the

lowest scoring terms from the top 127 terms provided those terms were not main

e�ects themselves. The main e�ects are required by the model as their inclusion al-

lows larger interacting terms to be constructed via the orthogonal properties of the

design. After identifying the top terms to be used in the model, we structured the

information in preparation for the commercial software, which included setting the

design for a factorial design given the terms, and integrating a signed table for the

number of factors and the response variables from the experiment runs. The factorial

design calculations computed all the information in the three sections: model eval-

uation, terms e�ects and signi�cance and comparative evaluation we have separated
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them into separate sections for organizational purposes.

5.2.3 Model Evaluation

The �rst method of evaluation for our experiment was used as a guideline to indicate

the percent of variation that our model was capable of explaining with the 127 highest

sum of square values. The limitation of 127 terms came from the commercial software,

but does provide information as to whether the adaptive system requires the inclusion

additional terms. Calculating the R-Squared values will indicate the percentage of

variance our model explains and its accuracy in predicting other data points. The

second portion of the model evaluation process investigates the consequences of the

the term commercial term limitation. The model evaluation process involves calcu-

lating lack-of-�t values to review the signi�cance of the terms not included on the

model, i.e. the terms not included in the 127 model terms. The lack-of-�t testing

will determine whether terms excluded from the model played a signi�cant role in the

results of the experiment and ultimately whether additional terms need be included

in adaptive game system.

5.2.4 Statistical Signi�cance

This section identi�es the statistical signi�cance of terms and terms with the largest

e�ects. The process created simply too many terms to review and discuss, thus

we selected only the statistically signi�cant main e�ects and 2-factor interactions to

present. We will discuss the largest e�ects and any surprising results. The tables for

this information will be available via the appendices. In the results section, we will

simply summarize any observation or patterns we were able to identify. The e�ect

sizes will be listed for all statistically signi�cant terms but discussion of their value

will be limited.
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5.2.5 Game Signi�cance

Section 5.2.4 identi�ed the e�ects and statistical signi�cance of terms included in

each model; the game signi�cance section will review these results and interpret their

impact on the players' performance. This section will qualitatively investigate the

model terms and will di�erentiate the statistically signi�cant terms from those that

provide an important impact on game play.

5.2.6 Comparative Evaluation

The comparative evaluation phase will utilize the performance results for simulated

Pac-Man games and compared them to other simulations of the experiment with

either the same algorithm with di�erent factor levels or di�erent algorithms with

the same factor levels. The comparative evaluation will occur only between factor

settings which are not included in the term evaluation section. As an example we

could compare Pac-Man's �nal score while playing against the �ocking algorithm,

when the vision range is 3 and when the vision range is 5. This should indicate

whether a factor increases or decreases the di�culty for a particular player strategy.

Similarly, the performance of Pac-Man will be compared utilizing the same factor

values but with di�erent player and NPC's strategies. As an example, comparing

the �ocking algorithm with vision range of 5 against the SSS-AB* and the weighted

heuristics algorithms. Comparing the same factor values with di�erent strategies will

identify the performance of that factor across all algorithms to identify the global

e�ect on the di�culty of the game. This will provide evidence that a factor could

provide alterations to the level of di�culty for all player types. It is our hope that

the results will indicate factors which alter the di�culty at di�erent rates for the

individual player strategies, as well as �nding factors which e�ect the di�culty for all

player strategies.
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5.2.7 Adaptive System

The �nal portion of our experiment is to implement an adaptive prototype Pac-Man

game which will be introduced separately in Chapter 6. The adaptive prototype

will use the results calculated in this chapter to produce a database for possible

modi�cations to the game and their result on the gameplay experience.

5.3 Results

This section presents the results of our experiment. The results will be presented

in four major sections. The �rst section presents the results of measuring model

variance. These results, described in Section 5.3.1 were obtained as a portion of

Minitab analysis of identifying factor signi�cance. Second, Section 5.3.2 highlights

the statistically signi�cant factors and their results on each response variable. Third,

Section 5.3.3 calculates ranges for game signi�cant factors and identi�es prominent

factors. Next, Section 5.3.4 presents the results of the separated factors, followed

by a comparative analysis of the algorithms in Section 5.3.5. Throughout this sec-

tion, we will utilize a number of short hand abbreviations for the algorithms and

factors, which will follow the structure of being completely capitalized with separa-

tion occurring via underscores, as an example SSS_FLOCK or PW_GW would refer

to algorithms SSS-AB* playing against the �ocking algorithm and Pac-Man weight

heuristics against the ghost weight heuristics respectively. Factors associated with

algorithms will be preceded with by a string identifying the proper algorithm, as

an example PW_BADGH_CTR would indicate algorithm is the Pac-Man weighted

heuristics and the factor the weight for avoiding the centroid of the ghosts.

The results from the factorial analysis phase of our experiment contained a large

amount of data. We organized and assembled the data based on pairs of algorithms

the �rst from the Pac-Man player and the second from the ghosts. This resulted

in four groups of algorithms, which will be identi�ed by the keyword in brack-

ets, SSS-AB* and �ocking (SSS_FLOCK), SSS-AB* and ghost weighted heuristics

(SSS_GW), Pac-Man weighted heuristics and �ocking (PW_FLOCK), and �nally



www.manaraa.com

113

Pac-Man weight heuristics and ghost weight heuristics (PW_GW). In addition, this

section will use short forms for the names of the response variables, they include the

number of: close-calls (CC), fruit created (FC), fruit eaten (FE), ghosts eaten (GH),

levels completed (LVL_COMP), power-pellets eaten (PP), repeated steps (RSQ),

steps taken (St), tokens collected (TO) and the score (Sc).

It is important to remember the issues discussed in Section 5.1 that limited and

ultimately altered how we performed our analysis. As mentioned, due to size re-

strictions, speci�c factors had to be separated and reviewed independently. For each

factor we separated it created 2k di�erent game con�gurations, one for the high value

and another for the low value, where k is the number of factors to separate. Our

selection process for choosing factors to separate was based on the following general

order; �rst factors which allowed the highest achievable score of the game to di�er,

followed by factors relating to player skill and when necessary relating to the fruit.

It was important to control experiments which di�ered on highest achievable score,

because the two groups produced a unfair comparison for the response variables. The

reasoning for prioritizing selecting factors relating to player skill was that the game

does not select these values, they must be estimated during gameplay. During a

gameplay session we would not be provided accurate values of player attributes, thus

this process would resemble a more realistic process. Ultimately, the true ful�llment

of this process would include more generic player characteristics such as tolerance for

frustration so that correlations between the di�culty of the game and speci�c player's

characteristics could be determined. However, since we are simulating the player's

performance and not using human players, this is left for future research.

The majority of results presented in this section use results from the simulation

runs which were separated based on the large number of factors in an e�ort to reduce

the factor size to 10. The results presented in nearly all of the following subsections

use collected data from these separated cases. A few subsections were capable of

recombining the separated cases, this produced a more general view of the algorithm

and factors e�ects. However, this task was only accomplished for the smaller cases

and thus a di�erent type of analysis will be used for these cases. Sections with data
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that was recombined will be identi�ed their respective introductions.

5.3.1 Model Evaluation

This section presents the results of the R-Squared (R-Sq) values for each of the al-

gorithm pairs. For each of the sections the R-Squared adjusted (Adj ) are calculated

for all of the response variables. This section is divided into four subsections one

for each algorithm pair: Section 5.3.1.1 has the SSS-AB* against the �ocking algo-

rithm, Section 5.3.1.2 presents the results of the SSS-AB* against the ghost weight

algorithm, Section 5.3.1.3 contains the results of Pac-Man weighted heuristics algo-

rithm against the �ocking algorithm and �nally Section 5.3.1.4 presents the Pac-Man

weighted heuristics algorithm against the ghost weighted heuristics algorithm.

5.3.1.1 SSS_FLOCK Model

The SSS_FLOCK model displayed the highest level of con�dence in explaining the

variance of all the models. As Table 5.3 demonstrates, the analysis produced a fairly

high level of con�dence in explaining the variation. Throughout all response variables

the mean R-Sq(adj) ranged from 69.8 to 81.5%. Our interpretation of these high

values is that SSS_FLOCK competition had a limited number of terms which had

a statistically signi�cant e�ect on the outcome. The SSS-AB* is a consistent and

optimal algorithm, though limited in our experiment the SSS-AB* still proved to be

the algorithm capable of consistently achieving highest scores and avoiding enemy

attack.

The lowest explanation of variance in this model comes from the response variable

for fruit collected (FE) at 69.8%, all other responses are close to 80%. Our intuitive

expectations were that the number of fruit collected would be a complex response to

explain. Our expectation was due to the fact that the decision to attempt to collect a

fruit is based on several pieces of situational information such as: the distance to the

fruit, the amount of risk in the current area and in the area of the fruit. Considering

these R-Sq values were achieved after excluding a large number of terms from model,
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SSS_FLOCK R-Sq(Adj)%

CC 81.5
FC 78.0
FE 69.8
GH 79.5

LVL_COMP 75.7
PP 77.0
RSQ 77.3
Sc 76.8
St 77.5
TO 77.6

Table 5.3: The calculated R-Sq values from the SSS_FLOCK algorithm for each of
the response variables.

a lack-of-�t test must be performed to validate the model.

To test whether the exclusion of the 897 other terms played a signi�cant role in

the experiment, we calculated whether the lack-of-�t was signi�cant. The full table

for the lack-of-�ts calculations can be reviewed in Appendix B. The F-values where

calculate for each response variable and all models, the SSS_FLOCK algorithm F-

values ranged from 0.16 to 0.38, these results proved the lack-of-�t was not signi�cant

for any of the SSS_FLOCK experiment models.

5.3.1.2 SSS_GW Model

Table 5.4 illustrates that the ghost weighted heuristics algorithm produces quite a

di�erent experience than the �ocking algorithm creating an environment with more

terms contributing to the variance. The mean R-Sq values for this model are much

lower than the SSS_FLOCK algorithm. Our results show that 56-69% of the variance

is explained via our model. The low level of explanation may indicate future di�culty

in the adaptation portion of the experiment. However, with more terms having an

e�ect on variance the �ner the potential granularity of the adaptation process. Similar

to the last model of the SSS_FLOCK we observe that the fruit collected and level

completion has the lowest explanation due the higher complexity of these responses.

The close calls and ghosts killed have the highest explanations of variance in this

model.
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SSS_GW R-Sq(Adj)%

CC 63.7
FC 62.3
FE 56.3
GH 68.7

LVL_COMP 55.7
PP 59.5
RSQ 61.1
Sc 57.9
St 62.2
TO 61.0

Table 5.4: The calculated R-Sq values from the SSS_GW algorithm for each of the
response variables.

The signi�cance of the lack-of-�t was tested for all response variables models for

all 16 separated cases of the SSS_GW algorithm. The full table for the lack-of-�ts

calculations can be reviewed in Appendix B. The F-values calculated ranged from

0.30 to 0.54 and proved the lack-of-�t was not signi�cant to the models.

5.3.1.3 PW_FLOCK Model

Table 5.5 illustrates slightly lower mean R-Sq (Adj) values where achieved in compar-

ison to the SSS_FLOCK, but achieved higher R-Sq(adj) than the SSS_GW. Thus

we were capable of explaining a large portion of the variance of the problem. As the

weighted heuristics algorithms are highly parametrized, we initially expected lower

R-Sq values due to a greater number of terms having an e�ect on the result. Produc-

ing R-Sq(adj) scores ranging from 67.7-79.2%, given the type of algorithm this hints

that either a small number of terms produced large e�ect sizes or that a large number

of factors contributed consistent scores. Similar to the other cases in this section the

number of fruit eaten and levels completed had the lowest value of explained variance.

The signi�cance of the lack-of-�t was tested for all response variable models for

all 128 separated cases for the PW_FLOCK algorithm. Due to size constraints the

full table in not available in the Appendix B, instead a condensed table is available

which demonstrates the maximum and minimum values and the range of F-values
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PW_FLOCK R-Sq(Adj)%

CC 74.0
FC 76.3
FE 67.7
GH 79.2

LVL_COMP 71.6
PP 73.8
RSQ 76.5
Sc 74.0
St 77.2
TO 74.5

Table 5.5: The calculated R-Sq values from the PW_FLOCK algorithm for each of
the response variables.

calculated for each response variable. The F-values calculated ranged from 0.15 to

0.54 and proved the lack-of-�t was not signi�cant to the models.

5.3.1.4 PW_GW Model

The �nal algorithm pair produced adequate results of 53.0-74.0% for R-Sq (adj) values

which are presented in table 5.6. The results for both GW sections explained less

of the variance than the �ocking algorithm models. The R-Sq(adj) results in this

section are slightly higher than the SSS_GW algorithm. This lends to the idea that

the SSS-AB* algorithm is provides more variation in gameplay, possibly as a better

matched opponent. One notable trend between the sets of �ocking and GW cases is

that while the number of fruit eaten and levels completely are consistently have the

lowest variance explanations in all the models, the number of fruit is the lowest the

�ocking algorithms while the levels completed has the lowest explanation in the GW

algorithms.

The signi�cance of the lack-of-�t was tested for all response variable models for

all 1024 separated cases for the PW_GW algorithm. Due to size constraints the

full table in not available in the Appendix B, instead a condensed table is available

which demonstrates the maximum and minimum values and the range of F-values

calculated for each response variable. The F-values calculated ranged from 0.15 to

0.67 and proved the lack-of-�t was not signi�cant to the models.
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PW_GW R-Sq(Adj)%

CC 64.1
FC 72.7
FE 62.6
GH 72.3

LVL_COMP 53.0
PP 63.8
RSQ 72.9
Sc 65.6
St 74.0
TO 66.9

Table 5.6: The calculated R-Sq values from the SSS_PW_GW algorithm for each of
the response variables.

5.3.2 Statistical Signi�cance

In this section we present the results of the statistically signi�cant e�ects of speci�c

model terms. Due to the large volume of results, the presentation of the terms

was organized to present only the main e�ects and the 2-factors interactions that

proved statistically signi�cant. Reviewing the main e�ects provides the opportunity

to identify factors to potentially eliminate from the analysis, these factors can not be

eliminated solely on the basis of their main e�ect statistical signi�cance as they may

interact with other factors in a signi�cant way.

It should be noted that the statistical signi�cance of the terms could be altered by

their inclusion in commercial analysis phase. Due to the limitation of the statistical

program to include greater than 127 terms, our analysis phase cannot include all terms

in the model. This limitation slightly alters the calculation for the sum of squares

and the size of the e�ects. However, this e�ects the terms uniformly thus they remain

comparable. As our adaptive system is independent of the commercial limitations

and utilizes the original calculations of a term's e�ect sizes to make alterations to the

game, it does not disrupt the results from other sections.

The results for this section have been recombined, this reduces the number of

cases and improves the ability to present and discuss the results. The results for this

section are presented using two di�erent methods. The SSS_FLOCK and SSS_GW
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present the statistically signi�cant terms in a set of factorial plots, with the full model

terms being available in the Appendix A. These are standard graphical plots used

for the presentation of factorial analysis. Due to the volume of the PW_FLOCK and

PW_GW experimental sets our statistical programs were unable to create factorial

plots for these two cases. Thus, we provided tables for the statistically signi�cant

main e�ects and 2-factors interactions.

Additionally, in this section we have omitted the response variable fruits created.

The fruit creation is entirely based on the number of steps the player has taken and

the frequency of the fruit factor, the inclusion of these tables seemed super�uous.

5.3.2.1 SSS_FLOCK Terms

The �rst algorithm pair we will present results for is the SSS_FLOCK, this section

was the simplest of all cases as the experimental design was separated based on only

one factor. As previously mentioned the frequency of fruit creation or the rate of fruit

creation will be a separation factor for all cases as it alters the highest achievable

score. If a higher number of fruit are available more points can be gained over the

same number of steps. The separation of the factor means that SSS_FLOCK pair

has to consider two game sessions, one for the low value the frequency of creation set

to 1/100 per steps and one set to high value at 1/50 per steps.

For determining the statistical signi�cance we were able to recombine the two sub-

cases separated based on the fruit frequency. This allowed us to calculate the e�ect

sizes for all of the factors and their interactions, excluding those which interacted

with the frequency of the fruit creation. This reduces the number of �gures required,

and eases the graphical demonstration of results. The following subsection displays

the results of the models for each of response variables. A large amount of similarity

occurs between the results of each response variable. This similarity is expected as

factors which alter the length of time Pac-Man is alive ultimately alter the length of

time to acquire tokens, power-pellets or other items.
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5.3.2.1.1 SSS_FLOCK Close Call Terms

Figure 5.1 illustrates the statistically signi�cant main e�ects of the SSS_FLOCK

model for the response variable close calls. The FLOCK_HUNGER main e�ect

produces the largest variation of the main e�ects on the number of close calls. As

intuitively expected the number of close calls increases as the value of the �ock's

hunger increased. This occurs because the �ock places a higher priority on chasing

Pac-Man. The FLEE_TIME factor at its high level value decreased the number of

close calls. This occurs due to ghosts avoiding Pac-Man when in a �eeing state and

thus the longer they remain in a �eeing state the longer they stay away for Pac-Man.

The ghost's vision range at its high level decreased the number of close calls, possibly

due to greater success in capturing Pac-Man.

Figure 5.2 illustrates the 2-factor interactions of the SSS_FLOCK model for the

response variable close calls. The �gure includes only factors which contributed sig-

ni�cantly to the interaction of at least one other factor. If the lines intersect in a

cell it indicates that an interaction occurred between the factors. If parallel lines

occur in a cell it indicates that the factors do not interact. Figure 5.2 indicates that

FLOCK_HUNGER interacts with several other factors. In addition DEATH_TIME

which was not a signi�cant main e�ect interacts with most of the listed factors. We

observe interaction between all of the �ocking algorithm factors and usually with the

ghosts vision length.

A full list of the terms included in the SSS_FLOCK close calls model can be found

in Appendix A.1. The full list of terms indicates that the largest factor e�ect was

for the FLOCK_HUNGER followed by the interaction of FLOCK_HUNGER and

FLOCK_SEP. This result justi�es an apriori expectation that prioritizing chasing

and spreading out across the border would result in an increased number of close

calls. The lack-of-�t value for this value was p = 1.00, which indicates that terms

omitted by this model did not play a signi�cant role in the outcome of the experiment.



www.manaraa.com

121

Figure 5.1: Demonstrating the SSS_FLOCK signi�cant main e�ects for the response

variable Close Calls. The coded values -1 and 1 represent the low and high factor

levels, respectively. The steeper the slope of the line the larger the di�erence e�ect

sizes.

Figure 5.2: Demonstrating the SSS_FLOCK signi�cant 2-factor interactions for the

response variable Close Calls. Parallel lines indicate that no interaction between the

two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.1.2 SSS_FLOCK Fruits Collected Terms

Figure 5.3 illustrates the statistically signi�cant main e�ects of SSS_FLOCK model

for the response variable fruits eaten. The largest positive main e�ect occurred from

the factor FRUIT_TIME, and the largest negative main e�ect from GH_VIS_LEN.

These results have an intuitive explanation that the number of fruits eaten should

increased the longer they are available on screen. As the performance of the ghosts

improves with increased vision range the number of fruits eaten decreases. This is

one of the few cases where FRUIT_TIME and PER_FRT values are statistically

signi�cant as main e�ects or 2-factor interactions.

Figure 5.4 illustrates the 2-factor interactions of the SSS_FLOCK model for the

response variable fruits eaten. The �gure includes only factors which contributed

signi�cantly to the interaction of at least one other factor. If the lines intersect

in a cell it indicates that an interaction occurred between the factors. If parallel

lines occur in a cell it indicates that the factors do not interact. The ghost's vision

range (GH_VIS_LEN) interacted with all other factors. In addition, we observed

FLEE_TIME interacted with most factors causing slight improvements in fruit eaten.

The factors FLEE_TIME, FLOCK_ALI, FLOCK_COH and FLOCK_HUNGER

were not signi�cant main e�ects.

A full list of the terms included in the SSS_FLOCK fruits eaten model can be

found in Appendix A.1. The full list of terms indicates that the largest factor e�ect

was for the FRUIT_TIME followed by GH_VIS_LEN. The lack-of-�t value for this

value was p = 1.00, which indicates that terms omitted by this model did not play a

signi�cant role in the outcome of the experiment.
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Figure 5.3: Demonstrating the SSS_FLOCK signi�cant main e�ects for the response

variable fruit eaten. The coded values -1 and 1 represent the low and high factor

levels, respectively. The steeper the slope of the line the larger the di�erence e�ect

sizes.

Figure 5.4: Demonstrating the SSS_FLOCK signi�cant 2-factor interactions for the

response variable fruit eaten. Parallel lines indicate that no interaction between the

two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.1.3 SSS_FLOCK Ghosts Eaten Terms

Figure 5.5 illustrates the statistically signi�cant main e�ects of SSS_FLOCK model

for the response variable ghosts eaten. The largest positive main e�ect occurred from

the factor FLEE_TIME, and the largest negative main e�ect was the GH_VIS_LEN.

These results have an intuitive explanation that longer the ghosts remain in a �eeing

state the longer they can be eaten. Increasing the ghost's vision range increases the

ghosts ability to view and avoid Pac-Man. Interestingly, FLOCK_HUNGER was

not a signi�cant main e�ect indicating that although the ghosts prioritized chasing

Pac-Man, Pac-Man was unable to improve the number of ghosts eaten by counter-

attacking.

Figure 5.6 illustrates the 2-factor interactions of the SSS_FLOCK model for the

response variable ghosts eaten. The �gure includes only factors which contributed sig-

ni�cantly to the interaction of at least one other factor. If the lines intersect in a cell

it indicates that an interaction occurred between the factors. If parallel lines occur in

a cell it indicates that the factors do not interact. Similar to the previous cases we ob-

serve that the ghosts and Pac-Man vision range interact with a large number of other

factors. Although the DEATH_TIME factor was not a signi�cant factor, it interacts

with every factor listed in Figure 5.6. This is a reoccurring trend for DEATH_TIME

factor throughout the �rst few cases. The perceived value of the fruit (PER_FRT)

interacts with FLOCK_HUNGER, FRUIT_TIME and DEATH_TIME indicating a

trade-o� between collecting fruits and the number of ghosts eaten.

A full list of the terms included in the SSS_FLOCK ghosts eaten model can be

found in Appendix A.1. The full list of terms indicates that the largest factor e�ect

was for the FRUIT_TIME followed by GH_VIS_LEN. The lack-of-�t value for this

value was p = 1.00, which indicates that terms omitted by this model did not play a

signi�cant role in the outcome of the experiment.
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Figure 5.5: Demonstrating the SSS_FLOCK signi�cant main e�ects for the response

variable Close Calls. The coded values -1 and 1 represent the low and high factor

levels, respectively. The steeper the slope of the line the larger the di�erence e�ect

sizes.

Figure 5.6: Demonstrating the SSS_FLOCK signi�cant 2-factor interactions for the

response variable ghosts eaten. Parallel lines indicate that no interaction between the

two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.1.4 SSS_FLOCK Levels Completed Terms

Figure 5.7 illustrates the statistically signi�cant main e�ects of SSS_FLOCK model

for the response variable levels completed. The largest positive main e�ect oc-

curred from the factor PAC_VIS_LEN, and the largest negative main e�ect from

GH_VIS_LEN. As the state factors FLEE_TIME and DEATH_TIME increased so

too did the number of levels completed. Interesting, an increase in the value of the

factor FLOCK_HUNGER increased the number of levels completed. One possible

reason for this result is that Pac-Man was capable of e�ciently avoiding the �ock,

while the ghosts constant chasing provided the opportunity to explore less protected

areas of the board.

Figure 5.8 illustrates the 2-factor interactions of the SSS_FLOCK model for the

response variable levels completed. The �gure includes only factors which contributed

signi�cantly to the interaction of at least one other factor. If the lines intersect in a

cell it indicates that an interaction occurred between the factors. If parallel lines occur

in a cell it indicates that the factors do not interact. Similar to the previous cases

we observe that the ghosts and Pac-Man vision range interact with a large number

of other factors. This case that DEATH_TIME was a signi�cant main e�ect, but

contributes less overall interaction with other factors.

A full list of the terms included in the SSS_FLOCK levels completed model can

be found in Appendix A.1. The full list of terms indicates that the largest factor

e�ects were the vision parameters. In addition the �ocking alignment and cohesion

interacted signi�cantly with a number of the largest terms. The lack-of-�t value for

this value was p = 1.00, which indicates that terms omitted by this model did not

play a signi�cant role in the outcome of the experiment.
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Figure 5.7: Demonstrating the SSS_FLOCK signi�cant main e�ects for the response

variable levels completed. The coded values -1 and 1 represent the low and high factor

levels, respectively. The steeper the slope of the line the larger the di�erence e�ect

sizes.

Figure 5.8: Demonstrating the SSS_FLOCK signi�cant 2-factor interactions for the

response variable levels completed. Parallel lines indicate that no interaction between

the two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.1.5 SSS_FLOCK Power-Pellets Collected Terms

Figure 5.9 illustrates the statistically signi�cant main e�ects of SSS_FLOCK model

for the response variable power-pellets collected. The largest positive main e�ect is

PAC_VIS_LEN, and the largest negative main e�ect was the GH_VIS_LEN. As

the state factors FLEE_TIME and DEATH_TIME increased so too did the number

of power-pellets collected.

Figure 5.10 illustrates the 2-factor interactions of the SSS_FLOCK model for

the response variable power-pellets eaten. The �gure includes only factors which

contributed signi�cantly to the interaction of at least one other factor. If the lines

intersect in a cell it indicates that an interaction occurred between the factors. If

parallel lines occur in a cell it indicates that the factors do not interact. Similar

to the previous cases we observe that the ghosts and Pac-Man vision range interact

with a large number of other factors. The FLEE_TIME and DEATH_TIME factors

interact with fewer factors than most of the other cases.

A full list of the terms included in the SSS_FLOCK power-pellets eaten model

can be found in Appendix A.1. Excluding the previously mentioned main e�ects the

terms with the largest e�ect on the power-pellets collected related to the interaction

of �ocking alignment, cohesion and Pac-Man's vision range. The lack-of-�t value for

this value was p = 1.00, which indicates that terms omitted by this model did not

play a signi�cant role in the outcome of the experiment.



www.manaraa.com

129

Figure 5.9: Demonstrating the SSS_FLOCK signi�cant main e�ects for the response

variable Power-Pellet eaten. The coded values -1 and 1 represent the low and high

factor levels, respectively. The steeper the slope of the line the larger the di�erence

e�ect sizes.

Figure 5.10: Demonstrating the SSS_FLOCK signi�cant 2-factor interactions for

the response variable Power-Pellets eaten. Parallel lines indicate that no interaction

between the two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.1.6 SSS_FLOCK Repeated Squares Terms

Figure 5.11 illustrates the statistically signi�cant main e�ects of SSS_FLOCK

model for the response variable repeated squares. The largest positive main e�ect

is PAC_VIS_LEN, and the largest negative main e�ect was the GH_VIS_LEN.

The factors FLEE_TIME has a larger e�ect than the DEATH_TIME factor. In

addition, we observe that factors FLOCK_SEP and FLOCK_HUNGER are both

causing a statistically signi�cant increase in the number of repeated squares.

Figure 5.12 illustrates the 2-factor interactions of the SSS_FLOCK model for the

response variable repeated squares. The �gure includes only factors which contributed

signi�cantly to the interaction of at least one other factor. If the lines intersect in

a cell it indicates that an interaction occurred between the factors. If parallel lines

occur in a cell it indicates that the factors do not interact. Similar to the previous

cases we observe that the ghosts and Pac-Man vision range interact with a large

number of other factors.

A full list of the terms included in the SSS_FLOCK repeated squares model can

be found in Appendix A.1. Excluding the previously mentioned main e�ects the terms

with the largest e�ect on the repeated squares response factors interacting with the

ghosts and Pac-Man's vision range. The lack-of-�t value for this value was p = 1.00,

which indicates that terms omitted by this model did not play a signi�cant role in

the outcome of the experiment.
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Figure 5.11: Demonstrating the SSS_FLOCK signi�cant main e�ects for the response

variable repeated squares. The coded values -1 and 1 represent the low and high factor

levels, respectively. The steeper the slope of the line the larger the di�erence e�ect

sizes.

Figure 5.12: Demonstrating the SSS_FLOCK signi�cant 2-factor interactions for the

response variable repeated squares. Parallel lines indicate that no interaction between

the two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.1.7 SSS_FLOCK Score Terms

Figure 5.13 illustrates the statistically signi�cant main e�ects of SSS_FLOCK

model for the response variable score. The largest positive main e�ect occurred from

the factor PAC_VIS_LEN, and the largest negative main e�ect from GH_VIS_LEN.

The FLEE_TIME main e�ect contributes only slightly less than increasing Pac-Man's

vision range.

Figure 5.14 illustrates the 2-factor interactions of the SSS_FLOCK model for the

response variable score. The �gure includes only factors which contributed signi�-

cantly to the interaction of at least one other factor. If the lines intersect in a cell it

indicates that an interaction occurred between the factors. If parallel lines occur in

a cell it indicates that the factors do not interact. Similar to the previous cases we

observe that the ghosts and Pac-Man vision range interact with a large number of

other factors. The FLEE_TIME factor interacts in statistically signi�cant way with

only DEATH_TIME and FLOCK_HUNGER.

A full list of the terms included in the SSS_FLOCK score model can be found in

Appendix A.1. Excluding the previously mentioned main e�ects, the terms with the

largest e�ect on the score response are the results of the interactions of the �ocking

separation and hunger and the interaction of alignment and cohesion The lack-of-�t

value for this value was p = 1.00, which indicates that terms omitted by this model

did not play a signi�cant role in the outcome of the experiment.
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Figure 5.13: Demonstrating the SSS_FLOCK signi�cant main e�ects for the response

variable score. The coded values -1 and 1 represent the low and high factor levels,

respectively. The steeper the slope of the line the larger the di�erence e�ect sizes.

Figure 5.14: Demonstrating the SSS_FLOCK signi�cant 2-factor interactions for the

response variable score. Parallel lines indicate that no interaction between the two

factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.1.8 SSS_FLOCK Steps Terms

Figure 5.15 illustrates the statistically signi�cant main e�ects of SSS_FLOCK

model for the response variable steps. The largest positive main e�ect occurred from

the factor PAC_VIS_LEN, and the largest negative main e�ect from GH_VIS_LEN.

The FLEE_TIME main e�ect contributes only slightly less than increasing Pac-Man's

vision range.

Figure 5.16 illustrates the 2-factor interactions of the SSS_FLOCK model for the

response variable steps. The �gure includes only factors which contributed signi�-

cantly to the interaction of at least one other factor. If the lines intersect in a cell it

indicates that an interaction occurred between the factors. If parallel lines occur in

a cell it indicates that the factors do not interact. Similar to the previous cases we

observe that the ghosts and Pac-Man vision range interact with a large number of

other factors. The FLEE_TIME factor interacts in statistically signi�cant way with

only DEATH_TIME and FLOCK_HUNGER.

A full list of the terms included in the SSS_FLOCK steps model can be found in

Appendix A.1. Excluding the previously mentioned main e�ects, the terms with the

largest e�ect on the score response are the results of the interactions of the �ocking

separation and hunger and the interaction of alignment and cohesion The lack-of-�t

value for this value was p = 1.00, which indicates that terms omitted by this model

did not play a signi�cant role in the outcome of the experiment.
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Figure 5.15: Demonstrating the SSS_FLOCK signi�cant main e�ects for the response

variable steps. The coded values -1 and 1 represent the low and high factor levels,

respectively. The steeper the slope of the line the larger the di�erence e�ect sizes.

Figure 5.16: Demonstrating the SSS_FLOCK signi�cant 2-factor interactions for the

response variable steps. Parallel lines indicate that no interaction between the two

factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.1.9 SSS_FLOCK Tokens Collected Terms

Figure 5.17 illustrates the statistically signi�cant main e�ects of SSS_FLOCK

model for the response variable tokens collected. The largest positive main e�ect is

PAC_VIS_LEN, and the largest negative main e�ect was the GH_VIS_LEN. The

FLEE_TIME main e�ect contributes only slightly less than increasing Pac-Man's

vision range.

Figure 5.18 illustrates the 2-factor interactions of the SSS_FLOCK model for the

response variable tokens collected. The �gure includes only factors which contributed

signi�cantly to the interaction of at least one other factor. If the lines intersect in

a cell it indicates that an interaction occurred between the factors. If parallel lines

occur in a cell it indicates that the factors do not interact. Similar to the previous

cases we observe that the ghosts and Pac-Man vision range interact with a large

number of other factors.

A full list of the terms included in the SSS_FLOCK steps model can be found in

Appendix A.1. Excluding the previously mentioned main e�ects, the terms with the

largest e�ect on the score response are the results of the interactions of the �ocking

separation and hunger and the interaction of alignment and cohesion The lack-of-�t

value for this value was p = 1.00, which indicates that terms omitted by this model

did not play a signi�cant role in the outcome of the experiment.
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Figure 5.17: Demonstrating the SSS_FLOCK signi�cant main e�ects for the response

variable tokens. The coded values -1 and 1 represent the low and high factor levels,

respectively. The steeper the slope of the line the larger the di�erence e�ect sizes.

Figure 5.18: Demonstrating the SSS_FLOCK signi�cant 2-factor interactions for the

response variable tokens. Parallel lines indicate that no interaction between the two

factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.1.10 SSS_FLOCK Summary

In summary, the results of the SSS-AB* and �ocking algorithm illustrated a couple

of reoccurring themes. Generally, as expected the vision range factors are consistently

statistically signi�cant main e�ects and are often the largest positive and negative

e�ects. The factor FLEE_TIME produced consistently results as a statistically sig-

ni�cant main e�ect. For the response variables: score, repeated steps, tokens and

power-pellets collected the FLEE_TIME was similar in e�ect size to Pac-Man's vi-

sion range. The factor for the duration of the death state tended to be a statistically

signi�cant main e�ect but also showed to interact with a number of other factors,

especially the �ocking separation factor. The length of time the fruit was available

played a minor role in most response variables, and played an expected role in the

number of fruit acquired. The factors related to the �ocking algorithm tended to be

dominated by the separation and hunger factors. Often as main e�ects the �ocking

factors would be non-signi�cant, this is explained by the fact that each factor con-

tributes equally to the algorithm and thus may not sway the decision process with

only minor adjustments. However, the interactions of the �ocking algorithm were a

consistent staple in the top e�ects list. The �ocking hunger often interacted with

the other �ocking algorithm factors, but also occurred most often as a statistically

signi�cant main e�ect. The hunger contributed to increasing the number of close calls

and diminishing Pac-Man's overall results in a number of response variables such as

tokens collected and steps. As the results in Appendix A.1 will indicate the �ocking

algorithm factors interacted mostly in pairs. The factors �ock hunger and separa-

tion appeared as number of the largest statistically signi�cant terms. However, the

other reoccurring interaction set was the �ock factors alignment and cohesion usually

appearing in unison in the set of larger interactions.

5.3.2.2 SSS_GW Terms

The second algorithm pair evaluated was the SSS_GW. We selected four factors to

separate our game information, this resulted in 24 or 16 game combinations. The fac-

tors selected were the perceived value of the fruit (SSS_PERCEIVED_FRUIT), the
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frequency of the fruit creation (FRUIT_FREQ), the time the fruit was available on

screen (FRUIT_TIME) and �nally the range of Pac-Man's vision (PAC_VIS_LEN).

Due to the large number of game combinations for this case creating factorial

plots for the main e�ects and 2-factor interactions became an excessive task. The

previous section on SSS_FLOCK terms recombined all of the models for both cases.

This resulted in 10 di�erent models, one to explain each of the response variables.

This was possible due to the fact that restructuring the terms and selecting the top

127 terms including the necessary main e�ects, produced models that did not have

signi�cant lack-of-�t. This indicated that no signi�cant terms were excluded from the

model. However, lack-of-�t tests for recombining the SSS_GW terms indicating a

signi�cant lack-of-�t for each response variable. Thus, the SSS_GW model would be

limited by the 127 maximum number of terms per model. Thus a recombined model

would not be valid, and the results can not be used. The statistical signi�cance of

each term was calculated outside of this limitation. The factorial plots were calculated

for a model containing only the main e�ects and 2-factor interactions.

5.3.2.2.1 SSS_GW Close Call Terms

Figure 5.19 illustrates the statistically signi�cant main e�ects of SSS_GW model

for the response variable close calls. The largest positive main e�ect is GH_VIS_LEN,

and the largest negative main e�ect was the GW_AWAY_GH which moves ghosts

away from each other. The GW_AWAY_GH factor performs a similar task as the

FLOCK_SEP which provides an impulse to push ghosts away from each other. Sim-

ilar to the results of the FLOCK_SEP, the GW_AWAY_GH decreases the number

of close calls. This result occurs due to an increase in the e�ectiveness of the ghosts

performance. The GW_PAC_DIR which prioritizes moving towards Pac-Man's next

square based on the current path and direction, is one of the largest e�ects and has

a positive e�ect on the number of close calls. The main e�ect size of the Pac-Man's

direction is larger than the main e�ect size of GW_PAC, which prioritizes Pac-Man's

current position. In addition, the FLEE_TIME and DEATH_TIME decreased the

number of close calls as increased. Interestingly, this is one of the few cases where
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the GW_FT main e�ect is statistically signi�cant. The GW_FT indicates a priority

to protect the fruit for the ghosts.

Figure 5.20 illustrates the 2-factor interactions of the SSS_GW model for the

response variable close calls. The �gure includes only factors which contributed sig-

ni�cantly to the interaction of at least one other factor. If the lines intersect in a cell

it indicates that an interaction occurred between the factors. If parallel lines occur in

a cell it indicates that the factors do not interact. The largest interactions occurred as

a a result of the vision parameters. The GW_PP factor which was not a statistically

signi�cant main e�ect, interacts in a statistically signi�cant way with the the vision

and state factors producing the next largest e�ect sizes.

A full list of the statistically signi�cant main e�ects and 2-factor interactions for

the SSS_GW close calls model can be found in Appendix A.1. The lack-of-�t value

for this value was p = 0.00, which indicates that terms omitted by this model played

a signi�cant role in the outcome of the experiment. In this case the 127 maximum

number of terms limited the analysis of the model, and the statistical signi�cance of

the terms was calculated independent of the term limitation.
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Figure 5.19: Demonstrating the SSS_GW signi�cant main e�ects for the response

variable Close Calls. The coded values -1 and 1 represent the low and high factor

levels, respectively. The steeper the slope of the line the larger the di�erence e�ect

sizes.

Figure 5.20: The SSS_GW signi�cant 2-factor interactions for the response variable

Close Calls. Parallel lines indicate no interaction occurred between terms, intersecting

lines indicate interaction.
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5.3.2.2.2 SSS_GW Fruits Collected Terms

Figure 5.21 illustrates the statistically signi�cant main e�ects of SSS_GW model

for the response variable fruit collected. The largest negative main e�ect occurred

from factor GH_VIS_LEN, and the largest positive main e�ect occurred from the

factor DEATH_TIME. The positive e�ect of the DEATH_TIME factor indicates

that Pac-Man used a portion of this time to achieve bonus task. The FLEE_TIME

and GW_AWAY_GH had some of the largest statistically signi�cant e�ect sizes.

Figure 5.22 illustrates the 2-factor interactions of the SSS_GW model for the

response variable fruit collected. The �gure includes only factors which contributed

signi�cantly to the interaction of at least one other factor. If the lines intersect in

a cell it indicates that an interaction occurred between the factors. If parallel lines

occur in a cell it indicates that the factors do not interact. The largest interactions

occurred as a result of GW_TO_GH and FLEE_TIME factor. This supports the

idea that Pac-Man was e�ective in consuming ghosts with the additional �ee time

and then used the ghost free time to collected fruits. Additional support for this play

style is provided by another of the largest interactions coming from the interaction of

GW_TO_GH and GW_PP factors.

A full list of the statistically signi�cant main e�ects and 2-factor interactions

for the SSS_GW fruit collected model can be found in Appendix A.1. The lack-

of-�t value for this value was p = 0.00, which indicates that terms omitted by this

model played a signi�cant role in the outcome of the experiment. In this case the

127 maximum number of terms limited the analysis of the model, and the statistical

signi�cance of each term was recalculated independent of the term limitation.
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Figure 5.21: Demonstrating the SSS_GW signi�cant main e�ects for the response
variable fruits eaten. The coded values -1 and 1 represent the low and high factor
levels, respectively. The steeper the slope of the line the larger the di�erence e�ect
sizes.

Figure 5.22: Demonstrating the SSS_GW signi�cant 2-factor interactions for the

response variable fruit eaten. Parallel lines indicate that no interaction between the

two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.2.3 SSS_GW Ghosts Eaten Terms

Figure 5.23 illustrates the statistically signi�cant main e�ects of SSS_GW model

for the response variable ghosts eaten. The largest positive main e�ect occurred from

the GH_VIS_LEN factor, and the largest negative main e�ect occurred from factor

GW_AWAY_GH. As expected, the GW_TO_GH played a statistically signi�cant

role for this response as moving �eeing ghosts towards each other would allow for a

greater number to be eaten in a short span of time. This cases contained a large

number of statistically signi�cant main e�ects and 2-factor interactions, only the

GW_FT factor was not signi�cant.

Figure 5.24 illustrates the 2-factor interactions of the SSS_GW model for the

response variable ghosts eaten. The �gure includes only factors which contributed

signi�cantly to the interaction of at least one other factor. If the lines intersect in

a cell it indicates that an interaction occurred between the factors. If parallel lines

occur in a cell it indicates that the factors do not interact. The majority of the

interactions had negative e�ects, the largest negative interaction occurred as a result

of the FLEE_TIME and GH_VIS_LEN.

A full list of the statistically signi�cant main e�ects and 2-factor interactions for

the SSS_GW ghosts eaten model can be found in Appendix A.1. The lack-of-�t value

for this value was p = 0.00, which indicates that terms omitted by this model played

a signi�cant role in the outcome of the experiment. In this case the 127 maximum

number of terms limited the analysis of the model, and the statistical signi�cance of

each term was recalculated independent of the term limitation.
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Figure 5.23: Demonstrating the SSS_GW signi�cant main e�ects for the response
variable ghosts eaten. The coded values -1 and 1 represent the low and high factor
levels, respectively. The steeper the slope of the line the larger the di�erence e�ect
sizes.

Figure 5.24: Demonstrating the SSS_GW signi�cant 2-factor interactions for the

response variable ghosts eaten. Parallel lines indicate that no interaction between the

two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.2.4 SSS_GW Levels Completed Terms

Figure 5.25 illustrates the statistically signi�cant main e�ects of SSS_GW model

for the response variable levels completed. The two largest main e�ect were both

negative, they were the GW_AWAY_GH and GH_VIS_LEN. The largest positive

main e�ects were the FLEE_TIME and DEATH_TIME indicating the additional

predator time is being used to complete level tasks in addition to the bonus tasks

shown in the previous section.

Figure 5.26 illustrates the 2-factor interactions of the SSS_GW model for the

response variable levels completed. The �gure includes only factors which contributed

signi�cantly to the interaction of at least one other factor. If the lines intersect in

a cell it indicates that an interaction occurred between the factors. If parallel lines

occur in a cell it indicates that the factors do not interact. The factors with the

largest statistically signi�cant e�ects are interactions include the GW_TO_GH and

DEATH_TIME factors and the FLEE_TIME and DEATH_TIME. In addition, the

interaction of the GW_PP and GH_VIS_LEN produces a negative e�ective on the

number of levels completed.

A full list of the statistically signi�cant main e�ects and 2-factor interactions for

the SSS_GW levels completed model can be found in Appendix A.1. The lack-of-

�t value for this value was p = 0.00, which indicates that terms omitted by this

model played a signi�cant role in the outcome of the experiment. In this case the

127 maximum number of terms limited the analysis of the model, and the statistical

signi�cance of each term was recalculated independent of the term limitation.
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Figure 5.25: Demonstrating the SSS_GW signi�cant main e�ects for the response
variable levels completed. The coded values -1 and 1 represent the low and high factor
levels, respectively. The steeper the slope of the line the larger the di�erence e�ect
sizes.

Figure 5.26: Demonstrating the SSS_GW signi�cant 2-factor interactions for the

response variable levels completed. Parallel lines indicate that no interaction between

the two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.2.5 SSS_GW Power-Pellets Collected Terms

Figure 5.27 illustrates the statistically signi�cant main e�ects of SSS_GW model

for the response variable power-pellets collected. The largest main e�ect was the

GH_VIS_LEN. The largest positive main e�ect was the FLEE_TIME factor.

Figure 5.28 illustrates the 2-factor interactions of the SSS_GW model for the

response variable power-pellets collected. The �gure includes only factors which con-

tributed signi�cantly to the interaction of at least one other factor. If the lines

intersect in a cell it indicates that an interaction occurred between the factors. If

parallel lines occur in a cell it indicates that the factors do not interact. The largest

2-factor interaction occurred as a negative e�ect of the GW_PP and GH_VIS_LEN

interaction. Unlike the previously discussed models the 2-factor interactions e�ect

size where similar in size for quite a few interactions.

A full list of the statistically signi�cant main e�ects and 2-factor interactions for

the SSS_GW power-pellets collected model can be found in Appendix A.1. The lack-

of-�t value for this value was p = 0.00, which indicates that terms omitted by this

model played a signi�cant role in the outcome of the experiment. In this case the

127 maximum number of terms limited the analysis of the model, and the statistical

signi�cance of each term was recalculated independent of the term limitation.
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Figure 5.27: Demonstrating the SSS_GW signi�cant main e�ects for the response
variable Power-Pellets. The coded values -1 and 1 represent the low and high factor
levels, respectively. The steeper the slope of the line the larger the di�erence e�ect
sizes.

Figure 5.28: Demonstrating the SSS_GW signi�cant 2-factor interactions for the

response variable Power-Pellets. Parallel lines indicate that no interaction between

the two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.2.6 SSS_GW Repeated Squares Terms

Figure 5.29 illustrates the statistically signi�cant main e�ects of SSS_GW model

for the response variable repeated squares. The largest negative main e�ect was

the GH_VIS_LEN. The largest positive main e�ect was the FLEE_TIME factor.

Interestingly, this is one of the few cases where the GW_FT main e�ect is statistically

signi�cant. The GW_FT indicates a priority to protect the fruit for the ghosts.

Figure 5.30 illustrates the 2-factor interactions of the SSS_GW model for the re-

sponse variable repeated squares. The �gure includes only factors which contributed

signi�cantly to the interaction of at least one other factor. If the lines intersect in a

cell it indicates that an interaction occurred between the factors. If parallel lines oc-

cur in a cell it indicates that the factors do not interact. The largest positive 2-factor

interaction occurred from the FLEE_TIME and DEATH_TIME factors. The inter-

action of GW_PAC_DIR and GH_VIS_LEN produced one of the highest negative

interactions. This indicates improved vision and focus on Pac-Man's direction can

e�ectively decrease Pac-Man's life span and repeated squares.

A full list of the statistically signi�cant main e�ects and 2-factor interactions for

the SSS_GW repeated squares model can be found in Appendix A.1. The lack-of-

�t value for this value was p = 0.00, which indicates that terms omitted by this

model played a signi�cant role in the outcome of the experiment. In this case the

127 maximum number of terms limited the analysis of the model, and the statistical

signi�cance of each term was recalculated independent of the term limitation.
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Figure 5.29: Demonstrating the SSS_GW signi�cant main e�ects for the response
variable repeated squares. The coded values -1 and 1 represent the low and high
factor levels, respectively. The steeper the slope of the line the larger the di�erence
e�ect sizes.

Figure 5.30: Demonstrating the SSS_GW signi�cant 2-factor interactions for the

response variable repeated squares. Parallel lines indicate that no interaction between

the two factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.2.7 SSS_GW Score Terms

Figure 5.31 illustrates the statistically signi�cant main e�ects of SSS_GW model

for the response variable score. The largest negative main e�ect was occurred from

the factor GW_AWAY_GH. The largest positive main e�ect was the FLEE_TIME

factor. This was one of the �rst cases where the ghosts' vision range was not one of

the largest e�ect sizes, although the ghosts' vision range is still statistically signi�cant

for this case.

Figure 5.32 illustrates the 2-factor interactions of the SSS_GW model for the re-

sponse variable score. The �gure includes only factors which contributed signi�cantly

to the interaction of at least one other factor. If the lines intersect in a cell it indicates

that an interaction occurred between the factors. If parallel lines occur in a cell it

indicates that the factors do not interact. The largest positive 2-factor interaction

occurred from the FLEE_TIME and DEATH_TIME factors. The largest negative

e�ect occurred as a result of GW_AWAY_GH and GH_VIS_LEN. The interaction

of the GW_PP and GW_TO_GH produced a highly negative e�ect. This result

is potentially caused by one of two scenarios, the �rst scenario is Pac-Man is un-

able to obtain the power-pellets because the ghosts are clustered tightly protecting

the power-pellets. The second scenario involves Pac-Man successfully obtaining the

power-pellet but being killed by ghost's turning from prey to predator.

A full list of the statistically signi�cant main e�ects and 2-factor interactions for

the SSS_GW score model can be found in Appendix A.1. The lack-of-�t value for

this value was p = 0.00, which indicates that terms omitted by this model played

a signi�cant role in the outcome of the experiment. In this case the 127 maximum

number of terms limited the analysis of the model, and the statistical signi�cance of

each term was recalculated independent of the term limitation.
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Figure 5.31: Demonstrating the SSS_GW signi�cant main e�ects for the response
variable score. The coded values -1 and 1 represent the low and high factor levels,
respectively. The steeper the slope of the line the larger the di�erence e�ect sizes.

Figure 5.32: Demonstrating the SSS_GW signi�cant 2-factor interactions for the

response variable score. Parallel lines indicate that no interaction between the two

factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.2.8 SSS_GW Steps Terms

Figure 5.33 illustrates the statistically signi�cant main e�ects of SSS_GW model

for the response variable steps. The largest statistically signi�cant main e�ects where

similar to other models. The largest negative main e�ects where the GH_VIS_LEN

and GW_AWAY_GH. The largest positive main e�ects where the FLEE_TIME and

DEATH_TIME. Interestingly, this is one of the few cases where the GW_FT main

e�ect is statistically signi�cant. The GW_FT indicates a priority to protect the fruit

for the ghosts.

Figure 5.34 illustrates the 2-factor interactions of the SSS_GW model for the

response variable steps. The �gure includes only factors which contributed signi�-

cantly to the interaction of at least one other factor. If the lines intersect in a cell it

indicates that an interaction occurred between the factors. If parallel lines occur in

a cell it indicates that the factors do not interact. Aside from the interactions of the

four largest main e�ects, we observe that GW_TO_GH, GW_PP, GW_PAC and

GW_PAC_DIR factors produce the next set of largest interactions.

A full list of the statistically signi�cant main e�ects and 2-factor interactions for

the SSS_GW steps model can be found in Appendix A.1. The lack-of-�t value for

this value was p = 0.00, which indicates that terms omitted by this model played

a signi�cant role in the outcome of the experiment. In this case the 127 maximum

number of terms limited the analysis of the model, and the statistical signi�cance of

each term was recalculated independent of the term limitation.
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Figure 5.33: Demonstrating the SSS_GW signi�cant main e�ects for the response
variable steps. The coded values -1 and 1 represent the low and high factor levels,
respectively. The steeper the slope of the line the larger the di�erence e�ect sizes.

Figure 5.34: Demonstrating the SSS_GW signi�cant 2-factor interactions for the

response variable steps. Parallel lines indicate that no interaction between the two

factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.2.9 SSS_GW Tokens Collected Terms

Figure 5.35 illustrates the statistically signi�cant main e�ects of SSS_GW model

for the response variable steps. The largest statistically signi�cant main e�ects where

similar to other models. The largest negative main e�ect was the GH_VIS_LEN.

The largest positive main e�ect the FLEE_TIME. For this case only 7 of the main

e�ects were statistically signi�cant.

Figure 5.36 illustrates the 2-factor interactions of the SSS_GW model for the

response variable steps. The �gure includes only factors which contributed signi�-

cantly to the interaction of at least one other factor. If the lines intersect in a cell it

indicates that an interaction occurred between the factors. If parallel lines occur in

a cell it indicates that the factors do not interact. Aside from the interactions of the

four largest main e�ects, we observe that GW_TO_GH, GW_PP, GW_PAC and

GW_PAC_DIR factors produce the next set of largest interactions.

A full list of the statistically signi�cant main e�ects and 2-factor interactions for

the SSS_GW steps model can be found in Appendix A.1. The lack-of-�t value for

this value was p = 0.00, which indicates that terms omitted by this model played

a signi�cant role in the outcome of the experiment. In this case the 127 maximum

number of terms limited the analysis of the model, and the statistical signi�cance of

each term was recalculated independent of the term limitation.
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Figure 5.35: Demonstrating the SSS_GW signi�cant main e�ects for the response
variable steps. The coded values -1 and 1 represent the low and high factor levels,
respectively. The steeper the slope of the line the larger the di�erence e�ect sizes.

Figure 5.36: Demonstrating the SSS_GW signi�cant 2-factor interactions for the

response variable tokens. Parallel lines indicate that no interaction between the two

factors. Intersecting lines indicate that an interaction did occur.
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5.3.2.2.10 SSS_GW Summary

The results presented in this section showed a signi�cant lack-of-�t for all models.

This indicates statistically signi�cant terms were excluded from the model. In ad-

dition, it indicates that our models have to the potential for higher explanation of

variation.

The results from the SSS_GW response variables found in Appendix A.2 consis-

tently indicate that the ghost vision range, the length of death time, the length of

�ee time and the factor to move away from other ghosts (GW_AWAY_GH) are the

largest contributors in terms of e�ect sizes. The length of �ee and death state time

factors for ghosts are the largest contributors for the positive e�ects, while ghost vi-

sion range and the force to move away from other ghosts (GW_AWAY_GH) are the

largest and most consistent among the negative e�ects. As main e�ects the factors

GW_TOKEN, GW_TO_GH and GW_PAC tend to be the next most in�uential

factors, which indicate that protecting tokens, supporting other ghosts and chasing

Pac-Man are the most e�ective portions of the ghost strategies in this situation.

The factor GW_TOKEN plays a signi�cant negative role in terms of the number

of levels completed. We attribute this to an increase in di�culty as Pac-Man collects

tokens. As this collection takes place, the number of areas to protect decreases and so

the ghosts can focus on centralizing their defensive strategy to protect speci�c areas.

The factor GW_TO_GH becomes a prominent factor for the number of ghosts eaten

response variable due to the fact that ghosts which group closer together can be eaten

by Pac-Man more quickly. As well, larger groups attract Pac-Man's attention over

smaller separated groups. An interesting note for comparing factor GW_PAC and

GW_PAC_DIR which represent Pac-Man's current position and Pac-Man's assumed

next position given direction is that despite the close proximity of the two positions

the e�ects size can greatly di�er between response variables. The GW_PAC_DIR

main e�ect is statistically signi�cant for a greater number of response variables. In

addition, the e�ect size for the the GW_PAC_DIR is much larger than the GW_PAC

e�ect size for the response variable close calls. This indicates that guessing Pac-Man's

next position serves to slightly increase the chasing and capturing capabilities of the
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ghosts. The GW_PAC_DIR allows slightly decreases the number of ghosts eaten

and the overall score of the player.

5.3.2.3 PW_FLOCK Terms

The next algorithm pair we evaluated was the PW_FLOCK, we separated the data

based on seven factors the �rst was the frequency of fruit creation followed by six

factors related to the Pac-Man weighted heuristics algorithm which were the priority

of the: token, power-pellet, edible ghosts , moving away from predator ghosts, moving

away from the center of the predator ghosts and toward the center of the items. Unlike

the previous sections which utilized factorial plots graphics to further elaborate the

experiment results, the results from this section and the following section contain

too many experiment runs to be calculate the factorial plots graphics. Instead, this

section will simply present tables of the main e�ects and the 2-factor interactions.

The terms statistical signi�cance was calculated based on 95% con�dence or α = 0.05.

Section 5.3.4.3 contains further information pertaining to the con�dence intervals for

the PW_FLOCK algorithm.

5.3.2.3.1 PW_FLOCK Close Calls Terms

Table 5.7 illustrates the PW_FLOCK model statistically signi�cant main e�ects

and 2-factor interactions for the response variable close calls. A * indicates main

e�ects which are not statistically signi�cant to the experiment results. Main e�ects

which are not statistically signi�cant have been included in the table because one

of their interactions is signi�cant. The largest positive main e�ect occurred from

the factor FLOCK_HUNGER. The largest negative main e�ect is GH_VIS_LEN.

Unlike previous algorithms the DEATH_TIME factor is not a signi�cant main e�ect,

although it does contribute to other signi�cant interactions. The largest interactions

are the result of the FLOCK_SEP and FLOCK_HUNGER and FLOCK_HUNGER

and GH_VIS_LEN, both of which are positive e�ects.
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Main E�ect E�ect Size 2-Factor Interaction E�ect Size

PW_FRT (A) -0.33 A*I -0.45
FLOCK_SEP (B) -0.79 B*C 1.36
FLOCK_ALI(C) -4.34 B*D 1.36
FLOCK_COH (D) -4.34 B*E 9.84

FLOCK_HUNGER(E) 13.16 B*G -0.54
FRT_TIME(F) * B*I 0.73
FLEE_TIME(G) -4.08 B*J 1.28

DEATH_TIME (H) * C*D -0.40
PAC_VIS_LEN (I) 4.76 C*E -1.17
GH_VIS_LEN (J) -6.97 C*I -0.68

C*J -1.49
D*E -1.17
D*I -0.68
D*J -1.49
E*G -0.59
E*I 1.21
E*J 3.74
G*H 1.22
G*I -2.11
G*J 1.98
H*I -0.51
H*J 0.55
I*J -0.76

Table 5.7: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_FLOCK algorithm for the response variable Close Calls. * indicates terms
whose main e�ect are not statistically signi�cant but contribute to a signi�cant 2-
factor interaction.

5.3.2.3.2 PW_FLOCK Fruits Collected Terms

Table 5.8 illustrates the PW_FLOCK model statistically signi�cant main e�ects

and 2-factor interactions for the response variable fruits collected. A * indicates

main e�ects which are not statistically signi�cant to the experiment results. Main

e�ects which are not statistically signi�cant have been included in the table be-

cause one of their interactions is signi�cant. The largest positive main e�ect is the

FRUIT_TIME. The largest negative main e�ect is GH_VIS_LEN. Similar to the

previous PW_FLOCK response variable the DEATH_TIME main e�ect was not

signi�cant, however in this case DEATH_TIME only interacts with FLEE_TIME.

In addition, the PW_FRUIT_FOR factor that emphasis collecting the fruit does
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produce one of the largest positive main e�ects. The signi�cant 2-factor interactions

of this case produced similar results for all interactions.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

PW_FRT (A) 0.05 A*F 0.01
FLOCK_SEP (B) * A*G 0.01
FLOCK_ALI(C) 0.01 A*I 0.01
FLOCK_COH (D) 0.01 A*J -0.01

FLOCK_HUNGER(E) -0.01 B*E 0.01
FRT_TIME(F) 0.12 B*J 0.01
FLEE_TIME(G) 0.02 C*D -0.01

DEATH_TIME (H) * C*F 0.01
PAC_VIS_LEN (I) 0.03 C*I -0.01
GH_VIS_LEN (J) -0.04 C*J -0.01

D*F 0.01
D*I -0.01
D*J -0.01
E*G -0.01
E*I 0.01
F*G 0.01
F*I 0.01
F*J -0.01
G*H 0.01
G*I -0.01
G*J 0.01
I*J -0.01

Table 5.8: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_FLOCK algorithm for the response variable fruit collected. * indicates terms
whose main e�ect are not statistically signi�cant but contribute to a signi�cant 2-
factor interaction.

5.3.2.3.3 PW_FLOCK Ghosts Eaten Terms

Table 5.9 illustrates the PW_FLOCK model statistically signi�cant main e�ects

and 2-factor interactions for the response variable ghosts eaten. A * indicates main

e�ects which are not statistically signi�cant to the experiment results. Main e�ects

which are not statistically signi�cant have been included in the table because one of

their interactions is signi�cant. The largest positive main e�ect is the FLEE_TIME.

The largest negative main e�ect is FLOCK_HUNGER. Similar to the previous re-

sponse variable, the DEATH_TIME main e�ect was not signi�cant, however in this
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case DEATH_TIME only interacts with the FLOCK_SEP and FLOCK_HUNGER.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

PW_FRT (A) * A*B 0.01
FLOCK_SEP (B) 0.04 A*G -0.01
FLOCK_ALI(C) 0.01 A*J -0.01
FLOCK_COH (D) 0.01 B*C -0.01

FLOCK_HUNGER(E) -0.05 B*D -0.01
FRT_TIME(F) * B*E 0.01
FLEE_TIME(G) 0.33 B*H 0.01

DEATH_TIME (H) * B*I 0.02
PAC_VIS_LEN (I) 0.06 B*J 0.04
GH_VIS_LEN (J) -0.03 C*D 0.01

C*I -0.01
C*J -0.01
D*I -0.01
D*J -0.01
E*G -0.02
E*H -0.01
E*J -0.01
G*I -0.01
G*J -0.03
I*J 0.01

Table 5.9: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_FLOCK algorithm for the response variable ghosts eaten. * indicates terms
whose main e�ect are not statistically signi�cant but contribute to a signi�cant 2-
factor interaction.

5.3.2.3.4 PW_FLOCK Levels Completed Terms

Table 5.10 illustrates the PW_FLOCK model statistically signi�cant main e�ects

and 2-factor interactions for the response variable levels completed. A * indicates

main e�ects which are not statistically signi�cant to the experiment results. Main

e�ects which are not statistically signi�cant have been included in the table be-

cause one of their interactions is signi�cant. The largest positive main e�ect is the

PAC_VIS_LEN. The largest negative main e�ect is GH_VIS_LEN. The interac-

tions for factors all showed to be similar in response.
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Main E�ect E�ect Size 2-Factor Interaction E�ect Size

PW_FRUIT_FOR (A) * B*C -0.01
FLOCK_SEP (B) * B*D -0.01
FLOCK_ALI (C) 0.01 B*E 0.01
FLOCK_COH (D) 0.01 B*G -0.01

FLOCK_HUNGER (E) * B*I 0.01
FRUIT_TIME (F) * B*J 0.01
FLEE_TIME (G) 0.02 C*D -0.01
DEATH_TIME (H) 0.01 C*J -0.01
PAC_VIS_LEN (I) 0.04 D*J -0.01
GH_VIS_LEN (J) -0.04 E*H -0.01

E*J 0.01
F*J 0.01
G*H 0.01
G*J 0.01
H*I -0.01
I*J -0.01

Table 5.10: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_FLOCK algorithm for the response variable levels completed. * indicates terms
whose main e�ect are not statistically signi�cant but contribute to a signi�cant 2-
factor interaction.

5.3.2.3.5 PW_FLOCK Power-Pellets Collected Terms

Table 5.11 illustrates the PW_FLOCK model statistically signi�cant main ef-

fects and 2-factor interactions for the response variable power-pellets collected. A

* indicates main e�ects which are not statistically signi�cant to the experiment re-

sults. Main e�ects which are not statistically signi�cant have been included in the

table because one of their interactions is signi�cant. The largest positive main ef-

fect is the PAC_VIS_LEN. The largest negative main e�ect is GH_VIS_LEN. The

FLEE_TIME main e�ect was one of the larger positive e�ects, indicating that the

additional �ee time was aiding Pac-Man get to the next power-pellet. The largest

2-factor interactions are positive and occur as a result of the �ocking algorithms

separation and hunger along with improving the ghosts vision range. A potential

explanation of this results is that the �ock maintained a tight formation which made

some areas of the board to dangerous for Pac-Man. With improved vision and sepa-

ration the ghosts would spread out a bit more to chase Pac-Man.
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Main E�ect E�ect Size 2-Factor Interaction E�ect Size

PW_FRUIT_FOR (A) * B*C -0.01
FLOCK_SEP (B) -0.01 B*D -0.01
FLOCK_ALI (C) 0.01 B*E 0.04
FLOCK_COH (D) 0.01 B*F 0.01

FLOCK_HUNGER (E) -0.02 B*G -0.01
FRUIT_TIME (F) * B*I 0.01
FLEE_TIME (G) 0.09 B*J 0.04
DEATH_TIME (H) 0.01 C*E -0.01
PAC_VIS_LEN (I) 0.2 C*I -0.01
GH_VIS_LEN (J) -0.19 C*J -0.01

D*E -0.01
D*I -0.01
D*J -0.01
E*H -0.01
E*I 0.01
F*J 0.01
G*H 0.01
G*I -0.01
G*J 0.01
H*I -0.01
I*J -0.01

Table 5.11: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_FLOCK algorithm for the response variable power-pellets collected. * indicates
terms whose main e�ect are not statistically signi�cant but contribute to a signi�cant
2-factor interaction.

5.3.2.3.6 PW_FLOCK Repeated Squares Terms

Table 5.12 illustrates the PW_FLOCK model statistically signi�cant main e�ects

and 2-factor interactions for the response variable repeated squares. A * indicates

main e�ects which are not statistically signi�cant to the experiment results. Main

e�ects which are not statistically signi�cant have been included in the table be-

cause one of their interactions is signi�cant. The largest positive main e�ect is the

FLEE_TIME. The largest negative main e�ect is GH_VIS_LEN. Similar to the

other cases, the �ocking separation and hunger along with the ghosts' vision played

an statistically signi�cant role.



www.manaraa.com

165

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

PW_FRUIT_FOR (A) -0.37 A*I -0.40

FLOCK_SEP (B) -0.72 B*C -1.04

FLOCK_ALI (C) 1.57 B*D -1.04

FLOCK_COH (D) 1.57 B*E 3.96

FLOCK_HUNGER (E) -1.13 B*G -1.40

FRUIT_TIME (F) * B*H 0.51

FLEE_TIME (G) 9.35 B*I 0.89

DEATH_TIME (H) 1.24 B*J 3.80

PAC_VIS_LEN (I) 9.02 C*D -0.41

GH_VIS_LEN (J) -14.53 C*E -0.39

C*I -1.04

C*J -1.15

D*E -0.39

D*I -1.04

D*J -1.15

E*I 0.33

E*J -0.34

G*H 1.56

G*I -1.93

G*J 1.4

H*I -0.98

I*J -0.36

Table 5.12: Statistically signi�cant main e�ects and 2-factor interactions from the

PW_FLOCK algorithm for the response variable repeated squares. * indicates terms

whose main e�ect are not statistically signi�cant but contribute to a signi�cant 2-

factor interaction.
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5.3.2.3.7 PW_FLOCK Score Terms

Table 5.13 illustrates the PW_FLOCK model statistically signi�cant main e�ects

and 2-factor interactions for the response variable score. A * indicates main e�ects

which are not statistically signi�cant to the experiment results. Main e�ects which

are not statistically signi�cant have been included in the table because one of their

interactions is signi�cant. The largest positive main e�ect is the PAC_VIS_LEN.

The largest negative main e�ect is GH_VIS_LEN. The FLEE_TIME is another of

the largest main e�ects. In addition, we observe that the FRUIT_TIME is a large

positive main e�ect indicating that Pac-Man is making the fruit a priority in the

game. Similar to the other cases, the �ocking separation and hunger along with the

ghosts' vision played an statistically signi�cant role.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

PW_FRUIT_FOR (A) 6.53 A*F 2.18
FLOCK_SEP (B) 4.51 B*C -5.76
FLOCK_ALI (C) 7.17 B*D -5.76
FLOCK_COH (D) 7.17 B*E 20.61

FLOCK_HUNGER (E) -9.35 B*G -7.34
FRUIT_TIME (F) 18.63 B*I 5.52
FLEE_TIME (G) 76.13 B*J 22.88
DEATH_TIME (H) 5.28 C*D -4.58
PAC_VIS_LEN (I) 84.54 C*I -2.51
GH_VIS_LEN (J) -74.46 C*J -9.71

D*I -2.51
D*J -9.71
E*G -2.26
E*H -3.25
E*I 1.94
F*G 2.50
F*I 2.53
G*H 7.72
G*I -5.63
I*J -7.72

Table 5.13: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_FLOCK algorithm for the response variable score. * indicates terms whose
main e�ect are not statistically signi�cant but contribute to a signi�cant 2-factor
interaction.
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5.3.2.3.8 PW_FLOCK Steps Terms

Table 5.14 illustrates the PW_FLOCK model statistically signi�cant main e�ects

and 2-factor interactions for the response variable steps. A * indicates main e�ects

which are not statistically signi�cant to the experiment results. Main e�ects which

are not statistically signi�cant have been included in the table because one of their

interactions is signi�cant. The largest positive main e�ect is the PAC_VIS_LEN.

The largest negative main e�ect is GH_VIS_LEN. Similar to the other cases, the

�ocking separation and hunger along with the ghosts' vision played an statistically

signi�cant role. Also, we observe a fairly large interactions from the FLEE_TIME

factor.

5.3.2.3.9 PW_FLOCK Tokens Collected Terms

Table 5.15 illustrates the PW_FLOCK model statistically signi�cant main e�ects

and 2-factor interactions for the response variable tokens. A * indicates main e�ects

which are not statistically signi�cant to the experiment results. Main e�ects which

are not statistically signi�cant have been included in the table because one of their

interactions is signi�cant. The largest positive main e�ect is the PAC_VIS_LEN.

The largest negative main e�ect is GH_VIS_LEN. Similar to the other cases, the

�ocking separation and hunger along with the ghosts' vision played an statistically

signi�cant role.

5.3.2.3.10 PW_FLOCK Summary

The PW_FLOCK algorithm demonstrates a consistent set of factors with large

e�ects, similar to other algorithm results the vision parameters are the reoccurring

statistically signi�cant factors. The length of the �ee state time factor along with

the Pac-Man's vision range continued to produce positive e�ects. The sole exception

for the �ee time factor is in the close calls response variable, in which �ee time

plays an important role in decreasing the number of close calls. As expected the

length of time the fruit was available and the player's perceived value of the fruit

created the largest e�ect sizes for the response variable the number of fruit collected.
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Main E�ect E�ect Size 2-Factor Interaction E�ect Size

PW_FRUIT_FOR (A) -0.52 A*I -0.49
FLOCK_SEP (B) -0.73 B*C -1.56
FLOCK_ALI (C) 2.33 B*D -1.56
FLOCK_COH (D) 2.33 B*E 5.88

FLOCK_HUNGER (E) -1.98 B*F 0.49
FRUIT_TIME (F) * B*G -2.32
FLEE_TIME (G) 14.35 B*I 1.22
DEATH_TIME (H) 1.81 B*J 5.57
PAC_VIS_LEN (I) 17.14 C*D -0.61
GH_VIS_LEN (J) -21.50 C*E -0.49

C*I -1.28
C*J -1.95
D*E -0.49
D*I -1.28
D*J -1.95
E*H -0.58
E*I 0.60
E*J -0.54
F*J 0.49
G*H 2.33
G*I -2.60
G*J 1.82
H*I -1.17
I*J -1.05

Table 5.14: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_FLOCK algorithm for the response variable steps. * indicates terms whose
main e�ect are not statistically signi�cant but contribute to a signi�cant 2-factor
interaction.

The most reoccurring signi�cant negative term was the ghost's vision range. The

�ocking algorithm factors were in most cases statistically signi�cant main e�ects.

The �ocking hunger and separation were frequently the largest 2-factor interactions.

Also, we observed the factors of the �ocking algorithm interacting with the ghosts'

vision range, showing improved performance with greater range.

5.3.2.4 PW_GW Terms

The �nal algorithm pair we evaluated was the PW_GW which contained the highest

number of game parameters, as such the organization process required the largest
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Main E�ect E�ect Size 2-Factor Interaction E�ect Size

PW_FRUIT_FOR (A) -0.15 B*C -0.50
FLOCK_SEP (B) * B*D -0.50
FLOCK_ALI (C) 0.73 B*E 1.87
FLOCK_COH (D) 0.73 B*F 0.22

FLOCK_HUNGER (E) -0.83 B*G -0.90
FRUIT_TIME (F) * B*I 0.31
FLEE_TIME (G) 4.90 B*J 1.73
DEATH_TIME (H) 0.55 C*D -0.19
PAC_VIS_LEN (I) 7.91 C*I -0.23
GH_VIS_LEN (J) -6.76 C*J -0.78

D*I -0.23
D*J -0.78
E*H -0.29
E*I 0.25
E*J -0.19
F*J 0.20
G*H 0.75
G*I -0.65
G*J 0.41
H*I -0.19
I*J -0.67

Table 5.15: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_FLOCK algorithm for the response variable tokens collected. * indicates terms
whose main e�ect are not statistically signi�cant but contribute to a signi�cant 2-
factor interaction.

number of separation factors. This algorithm pair used ten factor separators resulting

in 210 or 1024 game combinations. The tables identifying term signi�cance for the

PW_GW algorithm appear in Appendix A. Unlike the earlier sections which utilized

factorial plots graphics to further elaborate the experiment results, the results from

this section and the following section contain too many experiment runs to calculate

the factorial plots graphics. Instead, this section will simply present tables of the main

e�ects and the 2-factor interactions. The terms statistical signi�cance was calculated

based on 95% con�dence or α = 0.05. Section A.4 contains further information

pertaining to the con�dence intervals for the PW_GW algorithm.
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5.3.2.4.1 PW_GW Close Call Terms

Table 5.16 illustrates the statistically signi�cant main e�ects and 2-factor interac-

tions of PW_GW model for the response variable close calls. A * indicates main

e�ects which are not statistically signi�cant to the experiment results. Main e�ects

which are not statistically signi�cant have been included in the table because one of

their interactions is signi�cant. The largest positive main e�ect is the GH_VIS_LEN.

The largest negative main e�ect is FLEE_TIME. The largest interactions occur from

the interaction of the factors GW_AWAY_GH, FLEE_TIME, and GH_VIS_LEN.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

GW_TOK (A) -0.45 A*G 0.35
GW_PP (B) 0.67 A*J 0.58
GW_FT (C) 0.18 B*D -0.34
GW_PAC (D) 2.68 B*G -0.33

GW_PAC_DIR (E) 6.15 B*I 0.28
GW_AWAY_GH (F) -11.29 B*J 0.38
GW_TO_GH (G) -5.74 D*E -0.44
FLEE_TIME (H) -16.73 D*F 1.39
DEATH_TIME (I) 0.71 D*G 1.46
GH_VIS_LEN (J) 12.80 D*H -1.36

D*J 2.07
E*F -0.62
E*H -0.89
E*I 0.38
E*J -0.69
F*G 0.86
F*H 3.63
F*J -2.46
G*H 1.52
G*I -0.34
G*J 1.57
H*J -4.53
I*J 0.49

Table 5.16: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_GW algorithm for the response variable Close Calls. * indicates terms whose
main e�ect are not statistically signi�cant but contribute to a signi�cant 2-factor
interaction.
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5.3.2.4.2 PW_GW Fruits Collected Terms

Table 5.17 illustrates the statistically signi�cant main e�ects and 2-factor interac-

tions of PW_GW model for the response variable fruits collected. A * indicates main

e�ects which are not statistically signi�cant to the experiment results. Main e�ects

which are not statistically signi�cant have been included in the table because one of

their interactions is signi�cant. The largest negative main e�ect is FLEE_TIME.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

GW_TOK (A) 0.01 A*J -0.01
GW_PP (B) 0.01 B*C 0.01
GW_FT (C) -0.01 B*E 0.01
GW_PAC (D) 0.01 B*J -0.01

GW_PAC_DIR (E) -0.01 C*G -0.01
GW_AWAY_GH (F) -0.01 C*J 0.01
GW_TO_GH (G) -0.01 D*F 0.01
FLEE_TIME (H) 0.01 D*G 0.01
DEATH_TIME (I) 0.01 D*J 0.01
GH_VIS_LEN (J) -0.15 E*H 0.01

E*J -0.01
F*G -0.01
F*H 0.01
F*I -0.01
F*J 0.01
G*H 0.01
G*I -0.01
G*J 0.01
H*I 0.01
H*J -0.01
I*J -0.01

Table 5.17: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_GW algorithm for the response variable fruit eaten. * indicates terms whose
main e�ect are not statistically signi�cant but contribute to a signi�cant 2-factor
interaction.

5.3.2.4.3 PW_GW Ghosts Eaten Terms

Table 5.18 illustrates the statistically signi�cant main e�ects and 2-factor interac-

tions of PW_GW model for the response variable ghosts eaten. A * indicates main

e�ects which are not statistically signi�cant to the experiment results. Main e�ects
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which are not statistically signi�cant have been included in the table because one of

their interactions is signi�cant. The largest positive main e�ect is the FLEE_TIME.

The largest negative main e�ect is GW_PAC_DIR. The GW_PAC_DIR factor pri-

oritizes moving towards an estimate of Pac-Man's next position. The negative of

impact of the GW_PAC_DIR indicates that the ghosts are eating Pac-Man before

he can eat them. The largest interactions occur from the interaction of the factors

FLEE_TIME and GH_VIS_LEN and GW_PAC and GH_VIS_LEN.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

GW_TOK (A) * A*B 0.01
GW_PP (B) -0.01 A*G 0.01
GW_FT (C) * A*H -0.01
GW_PAC (D) -0.02 B*E -0.01

GW_PAC_DIR (E) -0.15 B*F -0.01
GW_AWAY_GH (F) -0.11 B*H 0.01
GW_TO_GH (G) -0.04 C*J -0.01
FLEE_TIME (H) 0.40 D*E 0.03
DEATH_TIME (I) -0.01 D*F -0.01
GH_VIS_LEN (J) 0.07 D*G 0.01

D*H -0.01
D*I -0.01
D*J 0.03
E*F 0.01
E*G 0.01
E*H -0.03
E*I 0.01
E*J 0.02
F*G 0.01
F*H -0.01
F*I -0.01
F*J -0.03
G*I -0.01
H*J -0.04

Table 5.18: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_GW algorithm for the response variable ghosts eaten. * indicates terms whose
main e�ect are not statistically signi�cant but contribute to a signi�cant 2-factor
interaction.
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5.3.2.4.4 PW_GW Levels Completed Terms

Table 5.19 illustrates the statistically signi�cant main e�ects and 2-factor inter-

actions of PW_GW model for the response variable levels completed. A * indi-

cates main e�ects which are not statistically signi�cant to the experiment results.

Main e�ects which are not statistically signi�cant have been included in the table

because one of their interactions is signi�cant. The largest positive main e�ect

is the FLEE_TIME. The largest negative main e�ects are GW_AWAY_GH and

GH_VIS_LEN. Similar to other cases, the largest interactions occur as a result of

FLEE_TIME and GH_VIS_LEN.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

GW_TOK (A) -0.002 A*J 0.002
GW_PP (B) 0.001 B*F 0.000
GW_FT (C) * B*H 0.000
GW_PAC (D) 0.000 B*J 0.000

GW_PAC_DIR (E) 0.003 D*F 0.001
GW_AWAY_GH (F) -0.013 D*G 0.002
GW_TO_GH (G) -0.006 D*H 0.000
FLEE_TIME (H) 0.003 D*J 0.001
DEATH_TIME (I) 0.002 E*F 0.000
GH_VIS_LEN (J) -0.013 E*I 0.000

E*J 0.000
F*G 0.000
F*H 0.002
F*I 0.000
F*J -0.001
G*I 0.000
G*J 0.001
H*I 0.000
H*J -0.003

Table 5.19: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_GW algorithm for the response variable levels completed. * indicates terms
whose main e�ect are not statistically signi�cant but contribute to a signi�cant 2-
factor interaction.

5.3.2.4.5 PW_GW Power-Pellets Collected Terms

Table 5.20 illustrates the statistically signi�cant main e�ects and 2-factor inter-

actions of PW_GW model for the response variable power-pellets collected. A *
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indicates main e�ects which are not statistically signi�cant to the experiment results.

Main e�ects which are not statistically signi�cant have been included in the table

because one of their interactions is signi�cant. The largest positive main e�ect is the

FLEE_TIME. The largest negative main e�ect is GH_VIS_LEN. Similar to other

cases, the largest interactions occur as a result of FLEE_TIME and GH_VIS_LEN.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

GW_TOK (A) -0.01 A*B 0.01
GW_PP (B) 0.01 A*H -0.01
GW_FT (C) * A*J 0.01
GW_PAC (D) 0.01 B*E -0.01

GW_PAC_DIR (E) 0.01 B*F -0.01
GW_AWAY_GH (F) -0.05 B*H 0.01
GW_TO_GH (G) -0.02 B*J -0.01
FLEE_TIME (H) 0.02 D*F 0.01
DEATH_TIME (I) 0.01 D*G 0.01
GH_VIS_LEN (J) -0.15 D*H -0.01

D*I -0.01
D*J 0.01
E*F -0.01
E*I 0.01
E*J -0.01
F*H 0.01
F*I -0.01
G*I -0.01
G*J 0.01
H*I 0.01
H*J -0.05
I*J 0.01

Table 5.20: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_GW algorithm for the response variable power-pellets collected. * indicates
terms whose main e�ect are not statistically signi�cant but contribute to a signi�cant
2-factor interaction.

5.3.2.4.6 PW_GW Repeated Squares Terms

Table 5.21 illustrates the statistically signi�cant main e�ects and 2-factor inter-

actions of PW_GW model for the response variable repeated squares. A * indi-

cates main e�ects which are not statistically signi�cant to the experiment results.
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Main e�ects which are not statistically signi�cant have been included in the table

because one of their interactions is signi�cant. The largest positive main e�ect is the

FLEE_TIME. The largest negative main e�ect is GH_VIS_LEN. Similar to other

cases, the largest interactions occur as a result of FLEE_TIME and GH_VIS_LEN.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

GW_TOK (A) 1.62 A*B 0.36
GW_PP (B) 3.82 A*G 0.34
GW_FT (C) -0.25 A*H 0.31
GW_PAC (D) 0.78 A*I 0.22

GW_PAC_DIR (E) 0.65 A*J -1.36
GW_AWAY_GH (F) -5.89 B*F 0.52
GW_TO_GH (G) -3.14 B*H 0.56
FLEE_TIME (H) 8.67 B*I -0.23
DEATH_TIME (I) 4.16 B*J -3.20
GH_VIS_LEN (J) -56.45 C*G -0.27

C*J 0.26
D*E -0.25
D*F 1.12
D*G 0.63
D*H -0.31
D*J 1.03
E*F -0.31
E*H 0.51
E*J -0.27
F*H 1.09
F*I -0.54
F*J 1.98
G*H 0.42
G*I -0.30
G*J 2.72
H*I 1.00
H*J -5.78
I*J -1.54

Table 5.21: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_GW algorithm for the response variable repeated squares. * indicates terms
whose main e�ect are not statistically signi�cant but contribute to a signi�cant 2-
factor interaction.



www.manaraa.com

176

5.3.2.4.7 PW_GW Score Terms

Table 5.22 illustrates the statistically signi�cant main e�ects and 2-factor inter-

actions of PW_GW model for the response variable repeated squares. A * indi-

cates main e�ects which are not statistically signi�cant to the experiment results.

Main e�ects which are not statistically signi�cant have been included in the table

because one of their interactions is signi�cant. The largest positive main e�ect is

the FLEE_TIME. The largest negative main e�ect is GH_VIS_LEN. Also, the

GW_AWAY_GH main e�ect has a large negative e�ect. Similar to other cases,

the largest interactions occur as a result of FLEE_TIME and GH_VIS_LEN.
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Main E�ect E�ect Size 2-Factor Interaction E�ect Size

GW_TOK (A) * A*B 1.03
GW_PP (B) 6.40 A*H -0.99
GW_FT (C) * B*F -2.04
GW_PAC (D) 1.52 B*H 1.89

GW_PAC_DIR (E) -11.40 B*J -5.33
GW_AWAY_GH (F) -34.39 D*E 2.72
GW_TO_GH (G) -14.89 D*F 3.28
FLEE_TIME (H) 59.26 D*G 3.86
DEATH_TIME (I) 7.90 D*H -2.85
GH_VIS_LEN (J) -90.44 D*I -1.42

D*J 7.96
E*F -1.01
E*H -2.99
E*I 1.49
F*G 2.78
F*H 2.88
F*I -1.94
F*J -1.58
G*H 1.36
G*I -1.63
G*J 5.95
H*I 2.25
H*J -18.88

Table 5.22: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_GW algorithm for the response variable score. * indicates terms whose main
e�ect are not statistically signi�cant but contribute to a signi�cant 2-factor interac-
tion.

5.3.2.4.8 PW_GW Steps Terms

Table 5.22 illustrates the statistically signi�cant main e�ects and 2-factor interac-

tions of PW_GW model for the response variable steps. A * indicates main e�ects

which are not statistically signi�cant to the experiment results. Main e�ects which are

not statistically signi�cant have been included in the table because one of their inter-

actions is signi�cant. The largest positive main e�ect is the FLEE_TIME. The largest

negative main e�ect is GH_VIS_LEN. Also, the GW_AWAY_GH main e�ect has

a large negative e�ect. We observe a large positive e�ects from DEATH_TIME.

Also, if the ghosts focus on protecting the power-pellets it has a positive e�ect on the
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number of steps. Similar to other cases, the largest interactions occur as a result of

FLEE_TIME and GH_VIS_LEN.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

GW_TOK (A) 1.40 A*B 0.43
GW_PP (B) 4.56 A*G 0.37
GW_FT (C) -0.21 A*J -1.09
GW_PAC (D) 1.45 B*F 0.45

GW_PAC_DIR (E) 0.95 B*G -0.25
GW_AWAY_GH (F) -7.75 B*H 0.67
GW_TO_GH (G) -3.86 B*J -3.75
FLEE_TIME (H) 10.93 C*G -0.30
DEATH_TIME (I) 5.10 D*E -0.30
GH_VIS_LEN (J) -65.43 D*F 1.52

D*G 0.80
D*H -0.52
D*I -0.33
D*J 1.73
E*F -0.35
E*H 0.58
E*J -0.53
F*H 1.40
F*I -0.70
F*J 2.17
G*H 0.56
G*I -0.39
G*J 3.35
H*I 1.24
H*J -7.22
I*J -1.33

Table 5.23: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_GW algorithm for the response variable tokens collected. * indicates terms
whose main e�ect are not statistically signi�cant but contribute to a signi�cant 2-
factor interaction.

5.3.2.4.9 PW_GW Tokens Collected Terms

Table 5.24 illustrates the statistically signi�cant main e�ects and 2-factor interac-

tions of PW_GWmodel for the response variable tokens collected. A * indicates main

e�ects which are not statistically signi�cant to the experiment results. Main e�ects

which are not statistically signi�cant have been included in the table because one of
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their interactions is signi�cant. The largest positive main e�ect is the FLEE_TIME.

The largest negative main e�ect is GH_VIS_LEN. Similar to other cases, the largest

interactions occur as a result of FLEE_TIME and GH_VIS_LEN.

Main E�ect E�ect Size 2-Factor Interaction E�ect Size

GW_TOK (A) -0.21 A*H -0.09
GW_PP (B) 0.73 A*J 0.25
GW_FT (C) 0.04 B*E -0.08
GW_PAC (D) 0.65 B*H 0.10

GW_PAC_DIR (E) 0.28 B*J -0.54
GW_AWAY_GH (F) -1.80 D*F 0.38
GW_TO_GH (G) -0.69 D*G 0.17
FLEE_TIME (H) 2.23 D*H -0.20
DEATH_TIME (I) 0.92 D*I -0.13
GH_VIS_LEN (J) -8.82 D*J 0.68

E*J -0.25
F*H 0.30
F*I -0.15
F*J 0.18
G*H 0.14
G*I -0.09
G*J 0.62
H*I 0.23
H*J -1.38
I*J 0.20

Table 5.24: Statistically signi�cant main e�ects and 2-factor interactions from the
PW_GW algorithm for the response variable tokens collected. * indicates terms
whose main e�ect are not statistically signi�cant but contribute to a signi�cant 2-
factor interaction.

5.3.2.4.10 PW_GW Summary

The �ee state time is the prominent positive factor in all response variables. For

the majority of the response variables it is the leading positive factor. However, for

the number of close calls and the number of power-pellets collected, �ee time has a

negative a�ect. As previously explained, as Pac-Man's predatorial time increases it

causes longer periods where Pac-Man will not receive close calls, likewise as Pac-Man

spends longer time periods in a predator mode the number of power-pellets collected

can decrease because power-pellets can be saved for strategic play when Pac-Man has
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to venture into a danger board area.

The factor GW_PP which emphasizes that ghosts should protect power-pellets

when they are close by produces a positive e�ect in all response variables including the

number of power-pellets collected and ghosts eaten. These results indicate a couple of

possible scenarios: 1) where Pac-Man is drawn to locations with a power-pellet during

the predatorial phase due to the large number of �eeing ghosts surrounding the area or

2) that Pac-Man is capable of avoiding the protecting ghosts which requires collecting

the power-pellet. The �nal reoccurring positive factor is the state variable length of

death time which creates positive results in the number of close calls and the number

of levels completed.

As expected, the ghost's vision range factor plays a prominent negative roll in

all response variables except the number of close calls and ghosts eaten which is

attributed to the improved chasing ability of the ghosts. The GW algorithm con-

tains two prominent negative factors other than the ghost's vision when competition

against the PW algorithm, the two competing factors are the GW_AWAY_GH and

GW_TO_GH. These two factors emphasis moving away from other ghosts and mov-

ing towards other ghosts, interestingly this could be considered comparable to the

�ocking algorithm cohesion and separation. These two factors play prominent roles

in decreasing the number of close calls, number of levels completed and power-pellets

collected.

The factors GW_PAC and GW_PAC_DIR produce similar results for about half

of the response variables. Comparing the two factors, we observe increased similarity

in comparison to the SSS_GW factor results. Although, the main e�ects are close in

value for a number of the response variables, GW_PAC_DIR produces a much larger

e�ect for the following response variables: close calls, ghosts eaten, levels completed

and the score. These results indicate that if we focus on Pac-Man's current position,

the ghosts arrive too late to challenge Pac-Man but early enough to be counter-

attacked, while if the ghosts focus on Pac-Man's next possible position, they provide

an increased challenge to Pac-Man forcing previously traveled squares to be revisited.
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5.3.3 Game Signi�cance

The previous section presented the statistically signi�cant terms for all algorithms

and response variables. The statistical signi�cance provides information pertaining

to the reliability and con�dence in the term's value. Thus, the statistical signi�cance

of a term provides only a portion the necessary information. Our analysis must

provide estimates for the practical signi�cance of a term. For instance, consider an

example with two statistically signi�cant terms from the score response model. The

�rst term could have an e�ect size of 5, the second term having an e�ect size of 60.

Although both terms have proven to be statistically signi�cant, an e�ect size of 5 for

the score model is not a large increase over 3 lives, especially considering the analysis

performed 3 repetitions. Thus, the second would be considered practically signi�cant,

while the �rst term might not be practically signi�cant. Throughout this section we

will review the practical signi�cance of the terms for each algorithm set of response

variables. Our analysis will refer to the practical signi�cance as the game signi�cance

throughout this section.

Section 5.3.2 presented the statistically signi�cant terms for all of the algorithms

and their sets of response variables. These results had been amalgamated from the

separated game sessions to provide an overall view of the factors' results on the per-

formance of the algorithm. The analysis in this section does not use the amalgamated

data; instead this section uses the separated game sessions data set. The �rst reason

we will use the separated game sessions data is because the R-Sq values and lack-of-�t

tests were all calculated using this data set. The lack-of-�t tests for the game sessions

data showed no signi�cant lack-of-�t. Secondly, the separated game sessions provide

structured results similar to observing individual player sessions; thus portraying a

methodology for performing the analysis on a set of individual player sessions or on-

line game sessions. The adaptive game prototype was designed to experiment with

individual player sessions; this provides game signi�cant results in a format usable by

the adaptive prototype.

The game signi�cance of a term is more subjective than the statistical signi�cance
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for a number of reasons. One reason is that no comparable results from other research

exist or are likely to exist for a single video game. To have comparable results, research

would have to be conducted on standard implementations of a game, and no such

standard version of games exists. Another reason is that the player's performance

can be volatile; thus selecting boundaries for game signi�cance can be di�cult. The

means, standard deviation and other descriptive statistics used in this section can

be found in AppendixE. It is important to remember the response variable means

calculated in our analysis are the result of 3 lives.

In considering a term's game signi�cance, we can review, among other things,

descriptive statistics such as means and standard deviation and the term e�ect sizes.

The term's e�ect sizes provides important information about how altering a factor

alters the results of a response variable. However, game signi�cance should address

a number of issues in combination with altering response variables if considering

integration in an auto-dynamic di�culty game system. For instance, the number

of modi�cations required to transition between two terms could play a role in game

signi�cance. If two terms have relatively equal e�ect sizes, selecting the term which

minimizes the number of required modi�cations provides two advantages. First, it

lowers the chance of alerting the player to the dynamic di�culty system, which as

previously discussed may cause players to externalize results. Second, it reduces the

chance of making a catastrophic adjustment which alters the di�culty of the game

in such a drastic way that it overwhelms or bores the user. This is an example of

dynamic game signi�cance which would be calculated at run-time and ranks terms

with similar e�ect sizes. Our analysis will focus on the e�ect size and descriptive stats

to justify our selection of game signi�cance.

Other areas of academic research separate practical signi�cance into categories

based on an estimate of signi�cance. Generally, results will be categorized based on

titles such as: trivial, bene�cial and negative [24]. Terms with minimal di�erence

between their e�ect sizes may be used to dynamically adjust between di�erent player

types or add variety. Terms with smaller e�ect sizes may be used to adjust the game

on a very �ne granularity to the di�culty of the player. Thus, although we will use
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the terminology trivial, this applies only to the e�ect size on the response variable

and not the impact on the game. Our categorical dissection will exclude the negative

category, as results will be separated based on the absolute value of the e�ect size.

Our categorical separation will use the terminology trivial, for terms with minimal

e�ect sizes on the response variables. Bene�cial terms will contribute higher absolute

e�ect sizes than the trivial terms. Prominent terms will be the game signi�cant terms

with the largest absolute factor e�ects.

5.3.3.1 Game Signi�cance of Response Close Calls

Identifying the game signi�cance of the close calls is a di�cult task due to the rules

of the game. Pac-Man is a game in which the player is either alive or dead; there is

no health. This makes dynamic adjustments more di�cult, as one close call could

potentially kill Pac-Man. The descriptive e�ect results presented in Appendix F in-

dicates that the mean absolute value occurs between 2.34 and 3.49. The standard

deviation for the close calls factor e�ects ranges from 4.14 to 5.20. Using this infor-

mation and general knowledge about the game we can build intervals for each of the

categories of statistical signi�cance. The trivial category could be considered terms

whose absolute e�ect sizes range from 0 to 2.34. Intuitively, we can consider e�ect

sizes below 3 as trivial because on average they provide one additional close call per

life. Using the standard deviation we de�ne our bene�cial range as 2.35 - 6.75. Thus

prominent terms will be classi�ed as having values of 6.75 or larger.

SSS_FLOCK SSS_GW PW_FLOCK PW_GW

GH_VIS_LEN GH_VIS_LEN GH_VIS_LEN GH_VIS_LEN
FLOCK_SEP GW_AWAY_GH FLOCK_ALI GW_AWAY_GH
FLEE_TIME FLEE_TIME

Table 5.25: Prominent Factors for Close Calls Response Variable.

A summary of the prominent factors for each set of competing algorithms occurs

in Table 5.25. For the �ocking algorithm and SSS-AB* algorithm the prominent game

main e�ects become: the �ee time, the �ocks hunger and the ghosts vision range. For

the SSS-AB* algorithm and the ghost-weighted algorithm the prominent game main
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e�ects become: the ghost's vision range and prioritizing ghost's spreading out. The

Pac-Man weighted algorithm against the �ocking algorithm produced the prominent

game main e�ects �ocking alignment and ghost's vision range. Pac-Man Weighted

algorithm against the ghost weighted algorithm produced the following prominent

main e�ects: ghost separation, the range of ghosts' vision and the length of the state

�ee time.

5.3.3.2 Game Signi�cance of Response Fruit Collected

In Pac-Man collecting fruit is a bonus task which contributes extra points to Pac-

Man's score when collected. Identifying the game signi�cance of terms for the fruits

collected can be misleading because the game signi�cance is dependent on the decision

to participate in trying to retrieve the fruit. If Pac-Man chooses not to participate in

collecting fruit the terms have no game signi�cance. If the decision is made to attempt

to retrieve a bonus fruit and the task is not accomplished, the response variable will

not re�ect this decision.

The descriptive e�ect results presented in Appendix F indicates that the mean ab-

solute value occurs between 0.01 and 0.19. The standard deviation for fruits collected

factor e�ects ranges from 0.02 to 0.03. Using this information and general knowledge

about the game we can build intervals for each of the categories of statistical signif-

icance. The trivial category could be considered terms whose absolute e�ect sizes

range from 0 to 0.01. Using the standard deviation we de�ne our bene�cial range as

0.01 to 0.035. Thus prominent terms will be classi�ed as having values of 0.035 or

larger.

SSS_FLOCK SSS_GW PW_FLOCK PW_GW

FLOCK_SEP GH_VIS_LEN FLOCK_COH FLEE_TIME
PER_FRT DEATH_TIME DEATH_TIME

PAC_VIS_LEN GH_VIS_LEN GH_VIS_LEN
GH_VIS_LEN

Table 5.26: Prominent Factors for Fruit Collected Response Variable.

A summary of the prominent factors for each set of competing algorithms occurs
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in Table 5.26. For the �ocking algorithm and SSS-AB* algorithm the prominent game

main e�ects become: the �ock separation, perceived value of the fruit, Pac-Man and

the ghost's vision range. For the SSS-AB* algorithm and the ghost-weighted algo-

rithm the only prominent game main e�ect is the ghost's vision range. The Pac-Man

weighted algorithm against the �ocking algorithm produced the following prominent

main e�ects: �ocking cohesion, the length of the state death time and ghost's vision

range. Pac-Man weighted algorithm against the ghost weighted algorithm produced

the following prominent main e�ects: the range of ghost's vision, the length of the

state �ee time and the length of the state death time.

5.3.3.3 Game Signi�cance of Response Ghosts Eaten

The descriptive e�ect results presented in Appendix F indicates that the mean ab-

solute value occurs between 0.04 and 0.06. The standard deviation for number of

ghosts eaten factor e�ects ranges from 0.05 to 0.09. Using this information and gen-

eral knowledge about the game we can build intervals for each of the categories of

statistical signi�cance. The trivial category could be considered terms whose absolute

e�ect sizes range from 0 to 0.05. Using the standard deviation we de�ne our bene�cial

range as 0.05 to 0.12. Thus prominent terms will be classi�ed as having values of 0.12

or larger.

SSS_FLOCK SSS_GW PW_FLOCK PW_GW

FLEE_TIME GW_TO_GH FLOCK_HUNGER GW_PAC_DIR
GH_VIS_LEN GW_AWAY_GH FLEE_TIME

FLEE_TIME

Table 5.27: Prominent Factors for Ghosts Eaten Response Variable.

A summary of the prominent factors for each set of competing algorithms occurs

in Table 5.27. For the �ocking algorithm and SSS-AB* algorithm the prominent game

main e�ects become: the length of time of the �ee state and the ghost's vision range.

For the SSS-AB* algorithm and the ghost-weighted algorithm the prominent game

main e�ects are: the ghost's separation and cohesion e�ect and the length of �ee

time. The Pac-Man weighted algorithm against the �ocking algorithm produced one
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prominent main e�ect, the �ocking hunger. Pac-Man weighted algorithm against the

ghost weighted algorithm produced the following prominent main e�ects: the ghost's

moving towards an estimate of Pac-Man's next position and the length of the state

�ee time.

5.3.3.4 Game Signi�cance of Response Levels Completed

The game signi�cance of the number of levels completed is an one of the most impor-

tant response variables because it indicates the player's progression. However, as we

observed in Section 5.3.1.1 that calculated the variation and validated our models,

the models for this response variable had the lowest values explanation of variation.

The descriptive e�ect results presented in Appendix F indicates that the mean

absolute value occurs between 0.01 and 0.06. The standard deviation for levels com-

pleted factor e�ects ranges from 0.01 to 0.02. Using this information and general

knowledge about the game we can build intervals for each of the categories of sta-

tistical signi�cance. The trivial category could be considered terms whose absolute

e�ect sizes range from 0 to 0.02. Using the standard deviation we de�ne our bene�cial

range as 0.02 to 0.035. Thus prominent terms will be classi�ed as having values of

0.035 or larger.

SSS_FLOCK SSS_GW PW_FLOCK PW_GW

FLEE_TIME GW_AWAY_GH DEATH_TIME
GH_VIS_LEN FLEE_TIME GH_VIS_LEN
PAC_VIS_LEN

Table 5.28: Prominent Factors for Levels Completed Response Variable.

A summary of the prominent factors for each set of competing algorithms occurs

in Table 5.28. For the �ocking algorithm and SSS-AB* algorithm the prominent game

main e�ects become: the length of time of the �ee state, Pac-Man's vision range and

the ghost's vision range. For the SSS-AB* algorithm and the ghost-weighted algo-

rithm the prominent game main e�ects are: the ghost's separation and the length

of �ee time. The Pac-Man weighted algorithm against the �ocking algorithm pro-

duced the following prominent main e�ects: the length of the state death time and
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the ghost's vision range. Pac-Man weighted algorithm against the ghost weighted

algorithm produced the no prominent main e�ects.

5.3.3.5 Game Signi�cance of Response Power-Pellets

The descriptive e�ect results presented in Appendix F indicates that the mean ab-

solute value occurs between 0.02 and 0.05. The standard deviation for power-pellets

collected factor e�ects ranges from 0.04 to 0.08. Using this information and general

knowledge about the game we can build intervals for each of the categories of statisti-

cal signi�cance. The trivial category could be considered terms whose absolute e�ect

sizes range from 0 to 0.035. Using the standard deviation we de�ne our bene�cial

range as 0.035 to 0.10. Thus prominent terms will be classi�ed as having values of

0.1 or larger.

SSS_FLOCK SSS_GW PW_FLOCK PW_GW

FLEE_TIME GW_AWAY_GH DEATH_TIME GH_VIS_LEN
GH_VIS_LEN FLEE_TIME GH_VIS_LEN
PAC_VIS_LEN DEATH_TIME
DEATH_TIME GH_VIS_LEN

Table 5.29: Prominent Factors for Power-Pellets Collected Response Variable.

A summary of the prominent factors for each set of competing algorithms occurs

in Table 5.29. For the �ocking algorithm and SSS-AB* algorithm the prominent

game main e�ects become: the length of time of the �ee and death state, Pac-Man's

vision range and the ghost's vision range. For the SSS-AB* algorithm and the ghost-

weighted algorithm the prominent game main e�ects are: the ghost's separation, the

length of �ee and death time and the ghost's vision range. The Pac-Man weighted al-

gorithm against the �ocking algorithm produced the following prominent main e�ects:

the length of the state death time and the ghost's vision range. Pac-Man weighted

algorithm against the ghost weighted algorithm produced one prominent main e�ect,

ghost's vision range.

The game signi�cance of the power-pellets collected response variable was such a

prominent factor that it became one of the major contributors to the heuristics built
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in the adaptive prototype.

5.3.3.6 Game Signi�cance of Response Repeated Squares

The descriptive e�ect results presented in Appendix F indicates that the mean abso-

lute value occurs between 1.55 to 3.52. The standard deviation for repeated squares

factor e�ects ranges from 2.02 and 6.11. Using this information and general knowl-

edge about the game we can build intervals for each of the categories of statistical

signi�cance. The trivial category could be considered terms whose absolute e�ect

sizes range from 0 to 2.25. Using the standard deviation we de�ne our bene�cial

range as 2.5 to 4.0. Thus prominent terms will be classi�ed as having values of 4.0 or

larger.

SSS_FLOCK SSS_GW PW_FLOCK PW_GW

FLEE_TIME GW_AWAY_GH DEATH_TIME GH_VIS_LEN
GH_VIS_LEN FLEE_TIME GH_VIS_LEN
PAC_VIS_LEN DEATH_TIME
DEATH_TIME GH_VIS_LEN

Table 5.30: Prominent Factors for Repeated Squares Response Variable.

A summary of the prominent factors for each set of competing algorithms occurs

in Table 5.30. For the �ocking algorithm and SSS-AB* algorithm the prominent

game main e�ects become: the length of time of the �ee and death state, Pac-Man's

vision range and the ghost's vision range. For the SSS-AB* algorithm and the ghost-

weighted algorithm the prominent game main e�ects are: the ghost's separation, the

length of �ee and death time and the ghost's vision range. The Pac-Man weighted al-

gorithm against the �ocking algorithm produced the following prominent main e�ects:

the length of the state death time and the ghost's vision range. Pac-Man weighted

algorithm against the ghost weighted algorithm produced one prominent main e�ect,

ghost's vision range.
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5.3.3.7 Game Signi�cance for Response Score

The descriptive e�ect results presented in Appendix F indicates that the mean ab-

solute value occurs between 11.87 to 22.03. The standard deviation for score factor

e�ects ranges from 18.03 and 36.72. Using this information and general knowledge

about the game we can build intervals for each of the categories of statistical signif-

icance. The trivial category could be considered terms whose absolute e�ect sizes

range from 0 to 15. Using the standard deviation we de�ne our bene�cial range as 15

to 50. Thus prominent terms will be classi�ed as having values of 50 or larger.

SSS_FLOCK SSS_GW PW_FLOCK PW_GW

FLEE_TIME GW_AWAY_GH DEATH_TIME GH_VIS_LEN
GH_VIS_LEN FLEE_TIME GH_VIS_LEN FLEE_TIME
PAC_VIS_LEN FLOCK_HUNGER

Table 5.31: Prominent Factors for Score Response Variable.

A summary of the prominent factors for each set of competing algorithms occurs in

Table 5.31. For the �ocking algorithm and SSS-AB* algorithm the prominent game

main e�ects become: the length of time of the �ee state, Pac-Man's vision range

and the ghost's vision range. For the SSS-AB* algorithm and the ghost-weighted

algorithm the prominent game main e�ects are: the ghost's separation, the length

of �ee and the ghost's vision range. The Pac-Man weighted algorithm against the

�ocking algorithm produced the following prominent main e�ects: the length of the

state death time, the �ocking hunger and the ghost's vision range. Pac-Man weighted

algorithm against the ghost weighted algorithm produced the following prominent

main e�ects: the length of the �ee time and ghost's vision range.

5.3.3.8 Game Signi�cance of Response Steps

The descriptive e�ect results presented in Appendix F indicates that the mean abso-

lute value occurs between 1.42 to 4.04. The standard deviation for steps factor e�ects

ranges from 2.24 and 7.03. Using this information and general knowledge about the

game we can build intervals for each of the categories of statistical signi�cance. The

trivial category could be considered terms whose absolute e�ect sizes range from 0
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to 2.70. Using the standard deviation we de�ne our bene�cial range as 2.70 to 6.75.

Thus prominent terms will be classi�ed as having values of 6.75 or larger.

SSS_FLOCK SSS_GW PW_FLOCK PW_GW

FLEE_TIME GW_AWAY_GH DEATH_TIME GH_VIS_LEN
GH_VIS_LEN FLEE_TIME GH_VIS_LEN FLEE_TIME
PAC_VIS_LEN DEATH_TIME FLOCK_HUNGER GW_AWAY_GH

FLOCK_HUNGER GH_VIS_LEN

Table 5.32: Prominent Factors for Steps Response Variable.

A summary of the prominent factors for each set of competing algorithms occurs

in Table 5.32. For the �ocking algorithm and SSS-AB* algorithm the prominent

game main e�ects become: the length of time of the �ee state, the �ock's hunger,

Pac-Man's vision range and the ghost's vision range. For the SSS-AB* algorithm

and the ghost-weighted algorithm the prominent game main e�ects are: the ghost's

separation, the length of �ee and death times and the ghost's vision range. The

Pac-Man weighted algorithm against the �ocking algorithm produced the following

prominent main e�ects: the length of the state death time, the �ocking hunger and

the ghost's vision range. Pac-Man weighted algorithm against the ghost weighted

algorithm produced the following prominent main e�ects: the length of the �ee time,

the ghost's separation and ghost's vision range.

5.3.3.9 Game Signi�cance of Response Tokens

The descriptive e�ect results presented in F indicates that the mean absolute value

occurs between 0.94 to 2.00. The standard deviation for tokens collected factor e�ects

ranges from 1.45 and 4.00. Using this information and general knowledge about the

game we can build intervals for each of the categories of statistical signi�cance. The

trivial category could be considered terms whose absolute e�ect sizes range from 0

to 1.50. Using the standard deviation we de�ne our bene�cial range as 1.50 to 4.25.

Thus prominent terms will be classi�ed as having values of 4.25 or larger.

A summary of the prominent factors for each set of competing algorithms occurs

in 5.33. For the �ocking algorithm and SSS-AB* algorithm the prominent game main
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SSS_FLOCK SSS_GW PW_FLOCK PW_GW

FLEE_TIME GW_AWAY_GH DEATH_TIME GH_VIS_LEN
GH_VIS_LEN FLEE_TIME GH_VIS_LEN
PAC_VIS_LEN GH_VIS_LEN FLOCK_HUNGER

Table 5.33: Prominent Factors for Tokens Response Variable.

e�ects become: the length of time of the �ee state, Pac-Man's vision range and the

ghost's vision range. For the SSS-AB* algorithm and the ghost-weighted algorithm

the prominent game main e�ects are: the ghost's separation, the length of the �ee

state time and the ghost's vision range. The Pac-Man weighted algorithm against the

�ocking algorithm produced the following prominent main e�ects: the length of the

state death time, the �ocking hunger and the ghost's vision range. Pac-Man weighted

algorithm against the ghost weighted algorithm produced the following prominent

main e�ect: ghost's vision range.

5.3.4 Separated Terms Comparison

This subsection presents the results from the factorial analysis, in which we compare

the results of the separated factors from the term signi�cance analysis Section 5.2.4.

The analysis performed in this section will be simpli�ed, it does not calculate the

e�ects of each factor but compares results graphically. In this section we present

results using graphs that illustrate a percentage comparison for each response variable

to highlight the di�erence in performance between factors. We will compare the base

case which has all factors at their lowest levels against the high case of each separated

factor.

5.3.4.1 Comparison of SSS_FLOCK Separated Terms

An important result for the analysis of this algorithm pair is that almost all response

variables are statistically similar whether we using the high or low value of fruit

frequency. If we review the results in Table 5.34 the high level value of fruit creation

indicated by game settings 1, indicates that the average number of fruits collected

nearly triples to 0.97, which increases at a rate slightly above the di�erence in the
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rate of fruit creation.

Game Setting ID_0 ID_1 Ratio Di�erence

CC 146.14 142.22 0.97
FC 2.29 5.83 2.55
FE 0.35 0.97 2.77
GH 3.038 2.87 0.95

LVL_COMP 0.68 0.64 0.94
PP 5.92 5.80 0.98
RSQ 138.90 137.17 0.98
Sc 1911.80 1947.33 1.02
St 371.78 364.71 0.98
To 226.96 221.74 0.98

Table 5.34: Comparing response variable results between two game sessions for
SSS_FLOCK. Game Setting ID 0 is the low level of fruit frequency, while Game
Setting ID 1 is the high value.

As expected with increasing the rate of fruit creation increases the score, however

this increase is expected to be higher based on the values from the number of fruit

collected. Intuitively if a fruit is worth 150 points if collected, our expectation is for

the score di�erence to be higher than the roughly 36 point di�erence. Other response

variables such as eating fewer ghosts indicate a possible reason for this increase in the

number of close calls, which occur when the ghosts come close to killing Pac-Man.

The increase in close calls indicates that the creation of additional fruits is creating

additional opportunities or possible traps where the ghosts can improve their chances

of eating Pac-Man. Although the �ocking algorithm is unaware of the position of fruit,

fruit are positioned at squares Pac-Man has already visited. Thus the more intuitive

explanation for this result is Pac-Man revisiting dangerous areas, backtracking into

guarded areas or chasing ghosts. The results here indicate that the increased creation

of the fruit is lowering Pac-Man's task competition of other response variables.
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Figure 5.37: Comparison of the response variables using SSS_FLOCK and modifying
the level of the Fruit Frequency. Game Setting ID 0 is the low level of fruit frequency,
while Game Setting ID 1 is the high value.

5.3.4.2 Comparison of SSS_GW Separated Terms

Next we review the separated factors that were excluded from the statistical and game

signi�cant sections of the SSS_GW analysis. Figure 5.38 demonstrates the average

results of each of these factors at their low level (GW_BASE), followed by the high

level results indicated by their ID number. As expected in GW_SSS_FRT_FREQ

as the frequency of fruit creation increases, so too does the number of fruit collected

as well as the score. Unlike the SSS_FLOCK algorithm, the di�erence in both the

number of fruit collected and the score is re�ective of the di�erence in the ratio

of fruit creation. Similarly, GW_SSS_FT produces an increase in the number of

fruit collected, however that correlates to increasing the amount of time the fruit is

available. An interesting result from comparing these factors is a noticeable increase

in the completion of levels occurring in certain game settings. This pattern occurs

when an increase in FRUIT_TIME or FRUIT_FREQ occurred, leading to a couple

of possible explanations. One explanation is that ghosts are moving to protect fruit

while leaving key areas of the board unguarded, another explanation is that as Pac-
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Man attempts to collect the fruit it draws the ghost's attention away from un�nished

areas of the board that they were protecting thus helping Pac-Man complete level

tasks.

Figure 5.38: Game Sessions results for SSS_GW games. The ID for each game
session represent the following factors at their high level SSS_PERCEIVED_FRUIT
(GW_SSS_PER_FRUIT), FRUIT_TIME (GW_SSS_FT), FRUIT_FREQ
(GW_SSS_FRT_FREQ), PAC_VIS_LEN (GW_SSS_PAC_VIS_LEN) and the
base case (GW_BASE) all factors set to their lowest level value.

5.3.4.3 Comparison of PW_FLOCK Separated Terms

To compare the game session for the separated factors in the PW_FLOCK algorithm,

we review seven sessions excluded from the previous analysis sections. The �rst six

relate to parameters of the PW algorithm followed by a �nal case which highlights the

results of the fruit frequency. The �rst factor we will investigate is PW_TOK_FOR

as (ID_1), while the base case or factors at their low level is illustrated by (ID_0).

Figure 5.39 illustrates a direct comparison between these cases. It appears that

prioritizing tokens ahead of other rules produces a negative e�ect on the game results.

An explanation for this result is the board is full of tokens and prioritizing tokens in

close proximity may lead to prioritizing dangerous tokens over ones available in safer
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zones. As results of the �ocking algorithm have demonstrated, it is less competitive

than the GW algorithm but if Pac-Man remains in the same area collecting all of the

tokens, the �ocking algorithm will have a greater chance of surrounding and capturing

Pac-Man.

Figure 5.39: Review of the PW_FLOCK game session with low (ID_0) and high
values (ID_1) of PW_TOK factor.

The next factor we will investigate is the PW_PP_FOR (ID_2) or priority for

moving toward and collecting visible power-pellets. As expected, focusing on power-

pellets results in Pac-Man eating more power-pellets, however an unexpected result

occurs during the usage of Pac-Man's predator time. As results in Figure 5.40 il-

lustrate, this factor causes increases in the number of close calls and fruit collected,

while a minimal di�erence in the number of ghosts eaten is observed. Two possible

causes for the increase in the number of close calls could be (1) while Pac-Man is

chasing edible ghosts their �ee state ends or (2) Pac-Man focusing on power-pellets

which the ghosts are protecting. As Pac-Man was unable to eat additional ghosts

with the increased predatorial time, it strengthens the possibility of being unable to

catch the ghosts or that the predator time was used in a di�erent way. The results

demonstrate a large spike in the number of fruits collected indicating that perhaps
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Pac-Man used the predator time to accomplish bonus tasks rather than level com-

pleting tasks. This possibility is reinforced by the fact that both tokens and level

completion values where also reduced.

Figure 5.40: Review of the PW_FLOCK game session with low (ID_0) and high
values (ID_2) of PW_PP factor.

The PW factor PW_EDIBLE_GH (ID_4) prioritizes eating ghosts during Pac-

Man's predator time. The results indicate that focusing too heavily on eating edible

ghosts diminished all other response variables except the number of ghosts eaten and

the number of close calls. The increased number of close calls is indicative of the

change from prey to predator for the ghosts while Pac-Man is chasing them.
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Figure 5.41: Review of the PW_FLOCK game session with low (ID_0) and high
values (ID_4) of PW_EDGH factor.

The PW factor PW_BADGH(ID_8) emphasizes avoiding ghosts, preferring to

avoid them as much as possible. This factor produces a vast improvement over the

performance of the base level in every response variable. Considering the increase

in the number of steps and power-pellets collected, the results indicate a quite small

increase in the number of ghosts eaten. This result and the large increase in repeated

squares indicates that Pac-Man is avoiding ghosts during his predator and prey time.

This factor is further discussed in the section comparing the player algorithms against

the �ocking algorithm.
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Figure 5.42: Review of the PW_FLOCK game session with low (ID_0) and high
values (ID_8) of PW_EDGH

The PW factor PW_BADGH_CTR(ID_16) emphasizes Pac-Man avoiding the

center of the ghost's positions in prey mode and moving towards this position in

predator mode as a heuristic to avoid being surrounded by the ghosts. We observe

that this heuristic increases the average life span of Pac-Man and the number of fruits

obtained, however the extra life span is ine�ective in acquiring additional points and

increases the number of repeated squares. A possible explanation is that Pac-Man is

failing to move toward high risk and high reward areas. The risk involved in moving

toward the centroid of the ghosts is dynamic and the true risk may �uctuate based

on the separation of the ghosts from this position. Thus Pac-Man could be missing

opportunities of high reward and minimal risk that are incorrectly deemed high risk.
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Figure 5.43: Review of the PW_FLOCK game session with low (ID_0) and high
values (ID_16) of PW_BADGHOST_CENTER

The factor PW_ITEM_CTR (ID_32) prioritizes moving toward the center of the

visible items on the board. The results indicate a negative e�ect on the majority of re-

sponse variables. Notably, the number of the close calls increases indicating additional

risk in these positions which is likely closer to the center of the board. As previous

mentioned in the analysis of the previous factor PW_BADGHOST_CENTER, mov-

ing toward or away from a centroid can be misleading as the position of items can

be at opposite ends of the board, but the centroid would be in the middle. Empha-

sizing this factor in isolation leads to prioritizing items in the center of the board

which tends to be a more dangerous areas of the board, while potentially ignoring

unprotected areas along the border of the board.
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Figure 5.44: Review of the PW_FLOCK game session with low (ID_0) and high
values (ID_32) of PW_ITEM_CTR

The factor FRUIT_FREQ (ID_64) produces results that are similar to the other

previously discussed algorithms. Although the basic pattern for this factor remains

the same, the separation of score, steps and repeated squares are more pronounced

for this case. Altering the frequency of the fruit for the algorithm PW_FLOCK

produced similar results especially in comparison to SSS_FLOCK algorithm.
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Figure 5.45: Review of the PW_FLOCK game session with low (ID_0) and high
values (ID_64) of Fruit Frequency

5.3.4.4 Comparison of PW_GW Separated Terms

The �nal algorithm pair for which we will review sessions is the PW_GW. It is the

largest case and as such contains the largest number of separated factors. The factors

where divided into groups, the �rst relating to the PW algorithm which produced

game sessions, the second group contains information for Pac-Man's vision and factors

relating to the fruit.

The factor PW_FRUIT_FOR (ID_1) emphasizes that Pac-Man focuses on ob-

taining the bonus fruits, the results of which are displayed in Figure 5.46. As expected,

we observe an increase in the number of fruits collected despite the decrease in length

of life. Although arriving at similar scores, the results indicate that the increased fruit

consumption occurred at the expense of the number of levels completed. This result

indicates that Pac-Man was successful in consuming the bonus fruit often enough to

cover the cost of going for a fruit, but was unable to achieve higher scores indicating

that shortly after eating a bonus fruit Pac-Man lost a life.
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Figure 5.46: Review of the PW_GW game session with low (ID_0) and high values

(ID_1) of PW_FRUIT

The factor PW_TOK_FOR(ID_2) prioritizes the collection of tokens above other

game elements. Figure 5.47 indicates similar results to those of PW_TOK_FOR in

the PW_FLOCK algorithm. Overall, we view a decline in all response variables,

the minimal di�erence occurring between the number of tokens and power-pellets

collected.
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Figure 5.47: Review of the PW_GW game session with low (ID_0) and high values

(ID_2) of PW_TOK

The factor PW_PP_FOR(ID_4) prioritizes the collection of power-pellets above

other objectives in the game. The results displayed in Figure 5.48 illustrate a di�erent

scenario from the same factor in the PW_FLOCK algorithm. Our observation for

the increased consumption of power-pellets is that it contributes to an increase in

the number of levels completed, a reduced number of repeated squares and a slight

increase in the score. This indicates that unlike the results of the �ocking algorithm,

the increase in the number of power-pellets collected is being utilized to perform level

completion tasks as opposed to being utilized for bonus tasks which occurred in the

�ocking algorithm results. The results demonstrate a decrease in the number of fruits

collected, but an increase in the total number of tokens collected. Similar to the

�ocking algorithm results, we observe an increase in the number of close calls despite

similar levels of steps.
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Figure 5.48: Review of the PW_GW game session with low (ID_0) and high values

(ID_4) of PW_PP

The factor PW_EDIBLE_GH(ID_8) prioritizes collecting edible ghosts above

the other rules in the game. The results against the base case are illustrated in Figure

5.49. As expected, the �gure indicates an increase in the number of ghosts eaten. The

�gure illustrates a decrease in nearly all response variables in this comparison. The

only other positive case is that the score response is slightly above the base case. This

indicates that chasing edible ghosts has resulted in enough ghosts being consumed

to account for the lower scores in the other response variables. Yet focusing on

consuming and collecting edible ghosts does not appear to provide enough time to

bene�t other response variables.
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Figure 5.49: Review of the PW_GW game session with low (ID_0) and high values
(ID_8) of PW_EDIBLE GHOST

Factor PW_BADGHOST(ID_16) prioritizes avoiding predator ghosts above all

other rules. In the PW_FLOCK algorithm, the PW_BADGH factor was the most

signi�cant factor. The PW_GW scenario demonstrates a great improvement in nearly

all response scores. A decrease in the number of fruits collected was observed, well

below the base when we consider the rate of fruit creation.
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Figure 5.50: Review of the PW_GW game session with low (ID_0) and high values
(ID_16) of PW_BADGHOST

Factor PW_BADGHOST_CENTER(ID_32) prioritizes avoiding the center of

the ghosts position. Figure 5.51 illustrates a reduced performance in all response

variables except the number of fruits collected. Although most responses have de-

creased in value, the change has been minimal. The diminished value in the number

of levels completed may be the result of avoiding important but protected areas. This

�gure demonstrates a every di�erent picture from the PW_BADGH_CTR against

the �ocking algorithm. The �ocking algorithm showed reduced performance but this

reduction was caused by an increase in close calls and the resulting repeated squares.

A possible explanation for the di�erence is the higher level of challenge from the GW

algorithm, which halted Pac-Man's progress before similar results could occur.
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Figure 5.51: Review of the PW_GW game session with low (ID_0) and high values
(ID_32) of PW_BADGHOST_CENTER

Factor PW_ITEM_CTR(ID_64) prioritizes moving toward the centroid of the

item's position. This factor results in reduced response variables values, although

we can observe that the number of close calls and tokens collected are in similar

ratio to the number of steps. Comparing the results of the PW_ITEM_CTR fac-

tor against the �ocking algorithm, we saw results similar to the diminished abil-

ity to collect power-pellets and edible ghosts. A potential reason is that power-

pellets tend to occur at the outskirts of the levels and would not be in a prioritized

area until a portion of the level has been cleared. Similar to the comparison of

the PW_BADGHOST_CENTER, we see the PW_ITEM_CTR has reduced re-

sponse variables values for both the �ocking and the weighted algorithm, but that

the weighted algorithm seems more competitive and did not allow Pac-Man enough

time to increase the number of close calls or repeated steps.
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Figure 5.52: Review of the PW_GW game session with low (ID_0) and high values
(ID_64) of PW_ITEM_CTR

Factor FRUIT_TIME (ID_128) increases the amount of time that the fruit was

available for consumption by Pac-Man. The results demonstrate minimal di�erences

in all response variables. The largest increase was the number of fruits collected which

could be expected given the factor change. The results indicate that going for the

fruits is increasing the life span of Pac-Man while potentially increasing the number

of repeated squares.
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Figure 5.53: Review of the PW_GW game session with low (ID_0) and high values
(ID_128) of PW_FRUIT_TIME

Factor FRUIT_FREQ (ID_256) in�uences the rate of fruit creation. As expected,

we see an increase in fruits created and fruits collected. However, we begin to observe

a larger dispersion between the number of levels completed and steps. Similar to

the results of other algorithm pairs when the frequency of fruit creation has been

increased, we observe little to no increase in the number of ghosts, power-pellets or

tokens acquired and a score variable value that is only slightly above that of the

lower fruit frequency. In this case, the additional fruits are decreasing the chances

of Pac-Man completing the level. This is unlike other algorithm comparisons which

caused an the increase in number of levels completed as it was thought the additional

fruits allowed Pac-Man to lure ghosts away from uncompleted areas of the level.
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Figure 5.54: Review of the PW_GW game session with low (ID_0) and high values
(ID_256) of PW_FRUIT_FREQ

Factor PAC_VIS_LEN (ID_512) increases Pac-Man's range of vision and is gen-

erally included as one of the factors in the term analysis. This factor's e�ect on each

response variable varies greatly. The pattern in Figure 5.55 demonstrates a preference

towards tokens, power-pellets and thus the completion of levels. This focus minimizes

the number of fruits collected and ghosts eaten which are worth higher point values

and thus may account for the nearly equal level in terms of the score response. Figure

5.55 illustrates a disproportional reduction in the number of repeated squares to the

decrease in the number of steps. This along with the increase in close calls indicates

that Pac-Man is utilizing his steps more e�ciently, even if this results in Pac-Man

being placed in scenarios with higher levels of danger.
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Figure 5.55: Review of the PW_GW game session with low (ID_0) and high values
(ID_512) of PW_PAC_VIS

5.3.5 Comparison of Algorithm Performance

This section compares each of the algorithms performance against both sets of op-

posing algorithms to investigate the global performance of the algorithm.

5.3.5.1 Comparison of SSS-AB* and Ghost Algorithms

Reviewing the performance of the SSS_GW algorithm against the SSS_FLOCK algo-

rithm provides three direct factors for comparison; the �ee time, death time and vision

range. The GW algorithm has parameters GW_AWAY_GH and GW_TO_GH that

perform functions similar to that of the �ocking algorithm's separation and cohesion

rules respectively. Between both sets of algorithms the vision parameters produce the

largest e�ects, however in the SSS_GW the factors related to the the length of the

ghosts' �ee and death state times become much more prominent. In terms of sim-

ilar factors both separation, or GW_AWAY_GH, and cohesion, or GW_TO_GH,

prevail as the dominant main e�ects of their respective algorithm parameters set.

An interesting note is that the factor for hunger in �ocking algorithm played a large
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role, while in the GW algorithm the factor GW_PAC which essentially weights the

rule to chase Pac-Man's position while still signi�cant did not contribute to the same

extent. An explanation for this result is that with a larger number of rules, each

rule contributes less to the �nal decision. Certain rules help to predict areas that

Pac-Man is required to go to accomplish level tasks, as Pac-Man completes portions

of the level the number of areas the ghosts have to protect diminishes and provides a

greater opportunity for the ghosts to anticipate Pac-Man next area of attack.

The GW algorithm is speci�cally tuned for the Pac-Man game, while the �ocking

algorithm is a generalized movement pattern. As such we expected a higher level

of competition between the SSS-AB* player and the GW ghosts. In Figure 5.56,

we illustrate the results of the SSS-AB* algorithm against the �ocking algorithm

(FL_BASE) and GW_* for the GW algorithm with low fruit frequency.

This �gure illustrates that the SSS-AB* algorithm performs signi�cantly better

against the �ocking algorithm than against the GW algorithm. A couple of exceptions

are the number of close calls and the number of ghosts eaten. These two exceptions

indicate that Pac-Man was capable of avoiding ghosts whether being chased or while

in predator mode. In comparing the SSS algorithm and the GW factors, we observe

that the results are quite similar between GW_SSS_FT, GW_SSS_PAC_VIS_LEN

and the GW_SSS_FT. The only major di�erence is the number of fruit eaten which

as expected increases the longer the fruit is available on screen. We observe smaller

increases in the number of fruit eaten when Pac-Man's vision range is increased or

when the perceived value of the fruit is increased.
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Figure 5.56: Comparison of SSS game sessions results the �ocking algorithm and

the ghost weighted algorithm. The �ocking algorithm (FL_BASE) has only one

case as both where near identical except for number of fruit created. The Ghost

Weighted algorithm has base (GW_BASE) and factors SSS_PERCEIVED_FRUIT

(GW_SSS_PER_FRUIT), FRUIT_TIME (GW_SSS_FT), and PAC_VIS_LEN

(GW_SSS_PAC_VIS_LEN).

5.3.5.2 Comparison of Flocking and Player Algorithms

When comparing the performance of the �ocking algorithms in SSS_FLOCK and

PW_FLOCK, we can compare the four �ocking factors, the state factors, the vi-

sion parameters and the fruit time. Figure 5.57 displays the average performance

of Pac-Man against the �ocking algorithm, with each ID representing a factor that

was split during the analysis phase. The IDs are similar to previous sections but

now include the names of both algorithms used in the experiment, to di�erenti-

ate between di�erent algorithm set. The PW_BASE represents the base case for

the PW_FLOCK algorithm thus all factors are set to their low level value, while

the SSS_FLOCK_BASE is the base case for the SSS_FLOCK algorithm. The

FRUIT_FREQ factor has been excluded from this �gure for clarity and to provide
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comparable game settings. Figure 5.57 illustrates that the SSS-AB* algorithm out-

performs each session of the PW algorithm for the majority of response variables. One

PW session, session number PW_FLOCK_BG produces comparable results in the

number of steps and fruit eaten, but produces a higher number of repeated squares.

The factor PW_BADGHOST, represented by PW_FLOCK_BG, increases the con-

trol against moving towards ghosts. The results indicate that PW_FLOCK_BG

outperformed all other PW sessions while maintaining only a slightly higher number

of close calls despite a large jump in playing time. It is apparent that the added

precaution of avoiding ghosts above the normal level of avoidance resulted in higher

achievement in each response variable and a larger number of repeated steps. As

expected the SSS_FLOCK (SSS_FLOCK_BASE) proved more e�cient in its use

of steps than the PW_FLOCK_BG, and as such despite taking a similar number of

steps outperformed the PW session on score and level completion while maintaining

an comparable number of repeated steps to other ID's.

Interestingly, factor PW_ITEM_CTR (PW_FLOCK_ITEMC), which adds ad-

ditional weight to moving towards the center of all items, produces fairly poor results

in comparison to other ID's, outperforming only PW_TOK_FOR (PW_FLOCK_TOK).

Increasing the priority of movement to the center of items greatly increased the num-

ber of close calls, and while the number of steps remained similar to other IDs, it had

an adverse a�ect on the number of levels completed.

A review of tables shows that the PW Pac-Man was capable of surviving for a

large number of steps, but was having greater trouble accomplishing goals than the

SSS-AB* algorithm. The number of close calls is signi�cantly reduced by the SSS-

AB* algorithm. This indicates that the Pac-Man was unable to avoid the ghosts

with the same level of skill as the SSS-AB* Pac-Man or that the SSS-AB* algorithm

simply maintained a greater amount of space between Pac-Man and the ghosts.
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Figure 5.57: Comparison of Flocking game session results between the SSS-

AB* and Pac-Man weight algorithm. The SSS-AB* algorithm has case with

fruit frequency at a low level(SSS_FLOCK_BASE) and one at the highest

level (SSS_FLOCK_FT_FQ). The results of two cases are nearly identical ex-

cept for number of fruit created (FC) and eaten (FE). The PW_FLOCK pair

the base case (PW_BASE) and a case with a high value of fruit frequency

(PW_FLOCK_FT_FQ). The increased frequency of fruit produce similar results

to the low level value of fruit frequency. We observe a slight increase in the number of

close calls (CC) and repeated steps (RSQ), in addition to the increase in fruit creation

(FC) and fruit eaten (FE).
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Figure 5.58: Comparison of Flocking game session results Pac-Man weight (PW)

algorithm. The PW_FLOCK algorithm has been split into two cases, this case

contains the base case level PW_BASE where all factors are at their lowest levels.

In addition, we compare the results of the PW_TOK_FOR(PW_FLOCK_TOK),

PW_PP_FOR(PW_FLOCK_PP), PW_EDIBLE_GH(PW_FLOCK_EG) fac-

tors.
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Figure 5.59: Comparison of Flocking game session results Pac-Man weight

(PW) algorithm. The PW_FLOCK algorithm has been split into two

cases, this case displays the base case level PW_BASE where all factors

are at their lowest levels. In addition, we compare the results of the

PW_BADGH(PW_FLOCK_BG), PW_BADGH_CTR(PW_FLOCK_BGC) and

the PW_ITEM_CTR (PW_FLOCK_ITEMC).
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5.3.5.3 Comparison of Pac-Man Weighted (PW) and Ghost Algorithms

In this section we compare the performance results of the PW algorithm's against

the �ocking and GW algorithms. In Figure 5.60 we illustrate a comparison of the

overlapping factors for the PW_FLOCK and PW_GW algorithms. Each ID corre-

sponds to a factor of the PW algorithm. Overall, the largest response improvements

are produced by the PW_BADGH factor illustrated by (PW_FLOCK_BG). Figure

5.60 highlights several patterns in the PW algorithm performance, the �rst being the

largest variation occurring in the number of levels completed which appears to be

nearly evenly split between a high and low value. The score, number of steps, power-

pellets, tokens and repeated squares responses have fairly consistent ranges of values.

The result illustrated in Figure 5.60 shows that the response variables for number

of levels completed, fruits and ghosts eaten are responsible for the largest variation

among the games, indicating a good potential for adaptation for the response score.

If we can identify pivotal points that greatly a�ect those responses, we can adapt

factors to potentially broaden the resulting range of scores. However, a response vari-

able such as the number of steps displays a reduced range with minimal opportunity

for improvement, thus it may not be a good candidate for adaptation.
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Figure 5.60: Comparison of PW algorithm game session results against the

Flocking algorithm. This �gure illustrates the base case of �ocking and

PW algorithm(PW_BASE_F). The factors for the PW algorithm comparison

are: PW_EDIBLE_GH (PW_EG_F), PW_POWER_PILL (PW_PP_F) and

PW_TOKEN (PW_TOK_F).
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Figure 5.61: Comparison of PW algorithm game session results against the Flock-

ing algorithm. This �gure illustrates the base case of �ocking and PW algorithm

(PW_BASE_F) and the following factors: PW_BADGH_CTR(PW_BGC_F),

PW_ITEM_CTR (PW_IC_F), and the fruit frequency (PW_FRT_FREQ_F).
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Figure 5.62: Comparison of PW algorithm game session results against the

Flocking and Ghost weighted heuristics algorithm. Flocking factors are la-

beled via PW_FLOCK_*, while ghost weighted heuristics algorithm factors are

la belled PW_GW_*. The base cases are FLOCK_BASE for �ocking and

GW_BASE for ghost weighted heuristics algorithm. The factors for the PW algo-

rithm comparison are: PW_BADGH(PW_BG), PW_BADGH_CTR(PW_BGC),

PW_EDIBLE_GH (PW_EG), PW_ITEM_CTR (PW_IC), PW_POWER_PILL

(PW_PP) and PW_TOKEN (PW_TOK).
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Figure 5.63: Comparison of PW algorithm game session results Ghost Weighted

(GW) algorithm. This �gure illustrates the base case of GW and PW al-

gorithm(PW_BASE_GW).The factors for the PW algorithm comparison are:

PW_FRT (PW_FRT_GW), PW_POWER_PILL (PW_PP) and PW_TOKEN

(PW_TOK).
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Figure 5.64: Comparison of PW algorithm game session results against the Flocking

and Ghost weighted heuristics algorithm. The factors for the PW and GW algo-

rithm are: PW_BADGH(PW_BG_GW), PW_BADGH_CTR(PW_BGC_GW),

PW_EDIBLE_GH (PW_EG_GW) and PW_ITEM_CTR (PW_IC_GW).
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Figure 5.65: Comparison of PW algorithm game session results against the

Ghost Weighted (GW) algorithm. This �gure illustrates the base case of GW

and PW algorithm(PW_BASE_GW). The factors for the PW algorithm com-

parison are: PW_FRT_TIME (PW_FRT_TIME_GW) and PW_PAC_VIS

(PW_PAC_VIS_GW).
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5.3.5.4 Comparisons to Ghost Weighted (GW) and Player Algorithms

Figure 5.67 compares the performance of the GW algorithm against the SSS-AB*

algorithm and the PW algorithm. The SSS-AB* algorithm performs e�ciently and

scores uniformly higher for the three factors with a similar number of steps. The

number of steps response variable produces similar results for both algorithms which

may indicate that the GW algorithm produces a level of challenge beyond the scope

of both players. Figure 5.67 indicates that the PW algorithm put a higher priority on

the fruits and was capable of obtaining the fruits during game play. While the SSS-

AB* focused less on the fruit and more on the eating ghosts. Figure5.67compares the

base case of both algorithms with increased vision range for Pac-Man. The SSS-AB*

algorithm performance stays consistent or slightly improves for all response variables

except fruit eaten. The range of vision aids the PW algorithm perform better in

completing additional level tasks, at the expense of bonus tasks but overall fails to

vastly improve the score. Increasing the vision range of Pac-Man greatly decreases

the number of repeated squares for the PW algorithm. The number of repeated

squares demonstrated improved results when the vision range increased for the PW

algorithm, yet the SSS-AB* remained nearly the same.
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Figure 5.66: Comparison of results from GW algorithm game session against the

SSS-AB* and Pac-Man weighted algorithm. The factor's algorithm are indicated by

PW_GW_* for the Pac-Man weight algorithm sessions SSS_GW_* for the SSS-

AB* sessions. The base cases are identi�ed by SSS_BASE and PW_BASE, and

indicate all factors at their lowest level . The factors are length of time the fruit is

available (PW_GW_FT and SSS_GW_FT).
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Figure 5.67: Comparison of results from GW algorithm game session against the

SSS-AB* and Pac-Man weighted algorithm. The factor's algorithm are indicated by

PW_GW_* for the Pac-Man weight algorithm sessions SSS_GW_* for the SSS-

AB* sessions. The base cases are identi�ed by SSS_BASE and PW_BASE, and

indicate all factors at their lowest level . The factors are the range of Pac-Man's

vision (PW_GW_PAC_VIS_LEN and SSS_GW_PAC_VIS_LEN).

5.4 Experimental Environment Summary

The following sections summarize the results from the o�ine experiments described

throughout the previous sections of this chapter.

5.4.1 Model Evaluation Summary

In the model evaluation portion of the experiment we calculated the R-Sq values

for each algorithm pair. The R-Sq value provides an assessment of the amount of

variance described by the model, given a maximum of 127 terms per model. The

means of R-Sq(adj) values ranged 53-74% for the GW algorithms and 68-82% for

the �ocking algorithms. The lowest value occurred during the PW_GW algorithm,

while the highest occurred for the SSS_FLOCK algorithm. The model evaluation is
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a portion of the process which potentially could be omitted from the implementation

process, however it does provide two useful pieces of information. The �rst relates to

the number of terms required for the adaptive system. If our model explains a large

portion of the variance with only 127 terms and the lack-of-�t is not signi�cant there

is a possibility that no additional terms are required. This could prove bene�cial for

storage cost. Additionally this portion of the experiment indicated which response

variables should be easier to control. In the results in Section 5.2.3 we identi�ed that

adapting the game to control the collection of fruit or the number of levels completed

would be the most di�cult. Although this section indicates di�culty in predicting

and explaining speci�c response variables results, the PW_GW results indicate that

the response variables score and number of close calls are two of the more di�cult

variables to control, yet we produced fairly positive results in controlling them.

The lack-of-�t testing determined whether the terms excluded from the model

played a signi�cant role in the variation of the experiment. As part of our experiment

we separated the factorial design into small cases, so that the analysis could be com-

pleted. As mentioned, each case contained 10 factors which limited the maximum

number of terms per model to 1024, but increased the number of models. Our testing

indicated that none of the lack-of-�t tests for any of the models for any algorithm

proved to be statistically signi�cant. This demonstrates that our model could not be

greatly improved by the inclusion of additional terms. The lack-of-�t testing proved

the commercial limit of 127 term did not play a signi�cant role in limiting the results

of our separated case models, although the term limit was the cause of separating the

models based on large number of factors. As we observed in attempting to reconstruct

the SSS_GW models was that the lack-of-�t values were statistically signi�cant.

5.4.2 Factorial Analysis Summary

The factorial analysis portion of the experiment identi�ed factors which played a

signi�cant role in the variation of the response variables in the simulation. The �rst

portion of this study identi�ed statistically signi�cant terms that contributed the

largest term e�ects to the response variables. Due to the large number of terms in
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the experiment, we presented only the top results for this analysis. This method was

expected to identify and quantify the terms e�ects, some of which intuitively appeared

obvious before the analysis. However, other important applications of this analysis

is the identi�cation of insigni�cant terms and factors, unexpected signi�cant factors

and interactions which can explain previously unexpected modi�cations to the level

of di�culty. Results indicated that the vision parameters consistently had the largest

e�ect on the majority of the response variables. As expected, Pac-Man's results

improved with increased vision range and decreased with the ghosts' vision range.

Each algorithm had a unique set of factors; a number of the factors implemented

similar functionality. Across the ghost algorithms we observed a pattern that the

most signi�cant factors dealt with the separation and cohesion of the group.

After identifying the statistically signi�cant terms, our analysis reviewed the

terms' e�ect sizes to analyze the practical signi�cance of the terms. The practical

or game signi�cance of the terms provides additional information for our prediction

methods on how each term will alter the results of the response variables. The game

signi�cance is more useful to game designers than the statistical information. If a

game designer wants to modify an aspect of the game, they would review the factor

e�ect sizes and consider what has practical value for their game, rather than review

only the statistical signi�cance.

The third part of the analysis performed a simple comparison of the high and

low levels of factors which were omitted from the term e�ect calculations due to size

constraints. This method of analysis provided a useful tool for observing the results

of the factors without the term e�ect size. This form of analysis is well-suited for level

designers wishing to experiment with values for two or more factors. Although the

interaction information is not accessible for this comparison, it provided interesting

insight into how each of the main factors was e�ecting each of the response variables.

The ability to graphically visualize the results highlighted the trade-o�s between the

di�erent response variables. The frequency of the fruit creation was the only common

factor for each of the algorithm pairs and provided interesting results varying from

only minimal increases to score and fruit totals to a larger role that altered the
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length of the player's life and drastically altered the number of close calls and levels

completed.

The �nal analysis task assessed the global e�ects of comparable factors between

the algorithms. As expected, we identi�ed the �ocking algorithm as the weaker

defensive algorithm of the pair. The weighted ghost algorithm had a consistently

strong performance against both the SSS-AB* and the PW algorithm, indicating a

high level of performance or challenge. The SSS-AB* algorithm performed better for

the majority of response variables. It focused less on the bonus items and more on

collecting ghosts which added to the longer life span. On occasions which the two

player algorithms had nearly equivalent life spans, the SSS-AB* algorithm was more

e�cient, utilizing the same number of steps to produce slightly higher values in the

scores.
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Chapter 6

The Adaptive System

One of the goals of this thesis is to build a prototype system that adapts game

parameters based on the outcomes from the factorial analysis in the previous chapter.

This �nal chapter describes the implementation of an adaptive system which attempts

to control the progress of the game. First we discuss the additional calculations and

information that helped build the player models for the adaptive system in Section

6.1. Next, in Section 6.2 we discuss our selection of response variables to measure

and observe during the adaptation and the goals for the adaptive system. After

selecting the response variables to control, we discuss creating and tuning performance

heuristics in Section 6.3. Finally, we present the results in Section 6.4 for each of the

game sessions being controlled by the adaptive system. We will conclude this section

by presenting our success rates for controlling the response variables within a speci�c

target range of results.

6.1 Term Loading for Adaptive Pac-Man

As previously mentioned, one of the limitations of commercial software is the inability

to load a large number of terms into the model. This limitation is less of an issue in

the adaptive system, as we can specify the maximum number of terms to be loaded.

The commercial software limit on the number of loadable terms provides a reasonable

estimate of the number of terms required to be included and the expected explanation

using only 127 terms. If we are producing adequate R-Sq(adj) values with 127 terms

and the lack-of-�t is not signi�cant, given that our models were loaded with the

largest factor e�ects �rst, including additional terms may not improve results or be

needed if space requirements are tight.
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The initial step of the adaptive system experimentation was to create e�ects tables

for each of the response variables. In the initial part of the experiment discussed in the

experiments in Chapter 5, we identi�ed signi�cant factors and calculated e�ects for

all of those terms. This information is used to build the e�ects tables. An e�ects table

could be considered a list of all terms and the size of their e�ects. However, because

we are only adapting to factor levels that previously appeared in the experiment, we

can precalculate the full e�ects of each factor setting. Thus, rather than performing

a real time calculation to determine a game factor's possible e�ect on the game every

time we wish to make a modi�cation, we precalculate and store the sum of each factor

interaction into a table.

Impact Size Factor IDs Factor Setting

-10.665 A*B*C*D*E*F*G*H*I*J 1010000001

Table 6.1: An example e�ect table row. The Factor Setting identi�es which of the
10 factors (A- J) should use a high value and the total impact of these adjustments
would be -10.665. In this case, the term would be A*C*J would use their high values.

Table 6.1 is an example row as it would appear in the e�ects table. The �rst num-

ber is the total impact for this factor setting. We will use the terminology impact

size to indicate the sum of all factors and interactions, using the level value corre-

sponding by the factor settings. The second string is a list of all potential factor IDs.

Finally the third number is a bit map indicating which factors are using their high

level value. In this case A*C*J would be activated, -10.665 is the sum of A, C, and

J's main e�ects and their interacting e�ects, A*C, A*J, C*J and A*C*J at their high

level and the rest of the terms at their low level e�ect size. This optimization means

that our e�ects tables contains 2k impact sizes. Our implementation has consistently

used k = 10 or 1024 total e�ects in the table. This restricts the number of factor

settings to which we could potentially adapt the game to 1024.

The e�ect table provides important information about the expected results of

performing each adaptation. Each e�ect table provides an ordered list of each factor

setting's impact on the game, providing us with an estimate of the maximum and

minimum values or interval of adaptation that we can expect to occur in the the
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game. This interval is an estimate of the results as the combination of continual

modi�cations could produce unexpected results outside of this interval. The e�ect

table includes other potentially useful pieces of information such as the maximum

and minimum adaptation stride, which could be used to control the granularity of

adjusting the game. The e�ect table could also be used to identify ranges where

insu�cient information is available. For instance if the factor settings adjacent to

the current settings have large di�erences in the impact size, we could identify this

situation as one needing extra precaution in making adjustments.

The next step in developing the adaptive system included collecting and calcu-

lating the coe�cients of the regression equation. These were calculated during the

analysis of term signi�cance. A coe�cient is the mean of a response variable through

all of the runs and repetitions. The sum of the coe�cient value and the factor setting

e�ect size from the e�ect table indicates the total expected value of a response vari-

able for that factor setting over the course of a full game. The sum of the coe�cient

and the e�ect size of the factor setting is the value that will be compared to the value

produced by the heuristic to assess the di�erence between the current di�culty and

the di�culty required to produce results within the expected interval.

6.2 Response Variable Selection

The next phase of the adaptive system experiment included selecting response vari-

ables to adapt during the game and setting target interval for the �nal results. We

selected a game session from each algorithm pair to experiment with a diverse range

in the adaptation process. From the SSS_FLOCK algorithm we selected the game

session with low fruit frequency. As both game sessions were highly similar this se-

lection was straight forward. For the SSS_GW algorithm we selected the session

where FRUIT_TIME used its high level. The FRUIT_TIME was selected for the

SSS_GW algorithm due to the variance in the number of fruits collected response,

while producing similar results in other response variables. For the PW_FLOCK and

PW_GW algorithms we selected the game sessions with the PW_BAD_GHOST pa-
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rameter using its high level value. We utilized the PW_BAD_GHOST parameter

because it proved to have the most positive in�uence of all the comparisons for the

PW algorithm.

Once the game sessions were chosen, we selected response variables to attempt

to control. For the SSS_FLOCK algorithm we would attempt to control the score

response. In the SSS_GW and PW_FLOCK algorithm the game would adapt to

control the resulting number of steps. Finally, for the PW_GW algorithm we selected

to control two response variables: the score and the number of close calls. We selected

the score response to adapt, because the player perceives the score as a marker for

success and failure. However, the score can be di�cult to control due to its progression

being non-linear in nature and because Pac-Man has a variable rate of points he can

obtain each life. As an example Pac-Man can be revisiting squares in an attempt to

collect a fruit or eat a ghost, as such, no additional points would be awarded but there

is no increase in di�culty either. Thus, we selected the number of steps as a second

response variable to control as it provides a more consistent view of the progress of the

player. Finally, we wished to experiment with controlling multiple response variables

to demonstrate potential future usage. Here we included the score and number of

close calls response. These two response variables were selected because we felt that

players utilize the score as an important measure of success while the number of close

calls could alter the perceived level of challenge while potentially achieving similar

scores.

The next set of Tables 6.2, 6.3, 6.4 and 6.5 illustrate the expected maximum

interval for adaptation for a response variable. They illustrate that the adaptation

process is easier for some player than for others, as some tables have a large absolute

values for the maximum but not the minimum. The numbers in these tables indicate

the largest positive and negative impact sizes for each algorithm and the coe�cient for

the controlled response variable in the regression equation. The largest impact sizes

in conjunction with the coe�cient help support our selection for the target interval.

As the coe�cient is the mean of all repetitions of experimental runs, it provides an

estimate of the expected results. Our goal is to select the target interval within the
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bounds of the absolute maximum impact sizes, preferably a relatively safe distance

from the boundaries of the impact size so as to provide the greater number of options

for adaptation. If we select target intervals near the very outskirts of the e�ect interval

we risk several issues during the experiment. The �rst issue is that adapting to the

outskirts is that the opportunities for adaptation are heavily reduced due to minimal

factor setting selection de�ned in that set of values. The second issue is that the

stride of adaptation increases toward the boundaries of the impact interval, as such

we may be unable to match or converge upon the required level of granularity for the

level of change and it may result in our target goals being near impossible achieve.

Negative Score E�ect Positive Score E�ect Regression Coe�cient
-561.7 985.8 1911.8
-528.4 813.3
-522.6 789.1

Table 6.2: SSS_FLOCK Largest positive and negative Score e�ect

Negative Steps E�ect Positive Steps E�ect Regression Coe�cient
-58.583 124.417 263.166
-56.4165 120.083
-54.083 118.417

Table 6.3: SSS_GW Largest positive and negative Step e�ects and the regression
equation coe�cient.

Negative Steps E�ect Positive Steps E�ect Regression Coe�cient
-105.769 190.398 374.871
-103.102 184.231
-97.2691 178.564

Table 6.4: PW_FLOCK Largest Factor Setting E�ect

For each game session and controlled response we selected target zones towards

which we attempted to direct the result of the game. Table 6.9 illustrates our selec-

tions for the target interval for each response, as well as the number of runs which

occurred above, below or in the target range before the adaptive process was imple-

mented. Our selection process for the response variable intervals attempted to cover

a basic scope of adaptive situations. For the �rst two cases we selected an interval



www.manaraa.com

236

Score Impact Size Close Call Impact Size
-257.291 -68.5687
-255.624 -65.7354
-241.457 -65.0687

Table 6.5: The lowest negative score and close calls impact sizes for the PW_GW
algorithm.

Score Impact Size Close Call Impact Size

696.044 266.264
642.709 191.765
607.709 187.264

Table 6.6: The highest positive score and close calls impact sizes for the PW_GW
algorithm.

in the middle of the results to replicate a slight increase or decrease in the level of

di�culty to have a balanced game. In the �nal two cases we selected intervals which

was tilted towards the high end or low end of results. This situation was selected to

replicate a scenario where a large number of alterations were required to drastically

alter the results, that is where a player model is required to drastically alter the

current performance to produce desired results.

6.3 Heuristics

In building our heuristics to predict Pac-Man's performance we utilized two meth-

ods. For the SSS algorithms we built the heuristic functions using portions of our

performance measures. For the PW algorithms we utilized regression equations along

with minor adjustments. An important issue arose from developing our system is

that the term e�ects were calculated over the duration of a full game, however our

adaptation process performs adjustments at set interval times during each life. Thus,

the �rst step in developing our heuristics was to isolate the performance of Pac-Man

for each life and provide an expected value for each of the response variables. For

our selected control response variables, we observed that the score response variable

decreased over the three lives, with the �rst life on average producing the highest

score. While the �rst life produced higher values for the number of close calls and
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Score Coe�cient Close Call Coe�cient
1144.58 144.804

Table 6.7: PW_GW Score and Close Call Coe�cients.

Score Coe�cient Close Call Coe�cient
1144.58 144.804

Table 6.8: PW_GW Score and Close Call Coe�cients.

steps, the performance remained fairly consistent over the second and third life, with

the third life value even producing higher values for the PW algorithm. The mean

performance for each life for each algorithm can be found in Appendix C.

The �rst heuristic was designed for predicting the steps of the SSS_GW game

session. The reason for choosing to develop this heuristic �rst where: designing for

the number of steps is a simpler task than designing for the score, and the result for

the number of steps provides a view of continuity and consistency. After reviewing the

results for this algorithm, we identi�ed that the number of power-pellets remaining

played an important role in the number of steps the player would complete during

a life. We designed the heuristic to use the mean number of steps per power-pellet

based on the mean performance of the current life of Pac-Man multiplied by the

number of power-pellets left on the board. The mean performance of the current

life, would use the means from all simulations of the experiment and separate the

statistics based on which life points where collected. So, if Pac-Man is on his �rst life

the mean performance would only compare information that is achieved during the

�rst life in the experimental runs. We performed similar calculations for the mean

steps per token. Since the number of tokens is quite high, we utilized a dampening

factor for the mean steps per token, which starts at 4 and decreases to 1.

The second heuristic has been designed to predict the score for the SSS_FLOCK

algorithm. As previously mentioned, the score is more di�cult response to control.

If the player collects a bonus item or a couple of additional ghosts the results can

easily go awry. An additional area of di�culty is that a heuristic that estimates the

score likely has to estimate the number of steps as well. Initially the creation of

this heuristic utilized the heuristic created for the SSS_GW steps simulation. In the
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Algorithm Response Target Interval

SSS_FLOCK Score 1600-2000
SSS_GW Steps 220-265

PW_FLOCK Steps 320-400
PW_GW Score 900-1050

Close Calls 70-120

Table 6.9: Selected response variables target interval prior to the activating the adap-
tive system.

Algorithm Target Interval Below Interval In Interval Above Interval

SSS_FLOCK 1600-2000 333 279 420
SSS_GW 220-265 327 285 418

PW_FLOCK 320-400 563 252 210
PW_GW 900-1050 199 277 555

70-120 234 262 532

Table 6.10: Results from the experimental phase we have calculated the number of
results to occur in the target interval prior to the activating the adaptive system.

GW algorithm the player died slightly faster, thus the dampening factors had to be

made to alter in larger increments. In addition we tweaked the SSS_GW heuristic by

creating an additional catch all for any estimates below the current number of steps.

Once we had an estimate for the number of steps, we compared the current rate of

scoring per step in relation to the mean rate of scoring for this speci�c Pac-Man life.

During the early portion of the life we would utilize the mean rate of scoring per life.

As the life progressed we would utilize the player's current rate of scoring to make

adjustments. Using the mean rate of score per life during the early portion of the life

was to avoid over-correcting for the natural progression of scoring which begins very

high and decreases throughout game play.

For the third heuristic we develop utilized a regression equation to predict the

number of steps for the PW_FLOCK algorithm. The regression equation was built

based on the regression coe�cient and the player's current score, the number of levels

completed, the number of close calls and the number of fruit, ghosts and power-pellets

collected. For this heuristic we actually built three separate regression equations one

for each of Pac-Man lives. Information for the regression equation can be found in D.

The fourth and �nal set of heuristics were designed for the PW_GW algorithm
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to predict the score and the number of close calls. We previously mentioned the di�-

culties in predicting the response variable score. Predicting the number of close calls

proved to be equally elusive. Even our regression equation produced low prediction

rates for the number of close calls. Ultimately, we used the expected number of close

calls from the results for the current factor settings. The second heuristic developed

for this section was used to predict the score. We utilized a regression equation to

predict the score. However, unlike the previous example, we used only one regression

equation for the entire game instead of the one per life. In addition, we populated

the regression equation with the maximum of the current value or the mean life value

to calculate the result. Thus, initially the game would adapt based on the mean,

but if the current game results progressed above the mean we would adapt to that

information. The regression equation for the score for the PW_GW algorithm used

the following response variables to predict the score: the number of steps, levels com-

plete, close calls, ghosts collected, power-pellets, and repeated steps. Information for

the regression equation can be found in D.

6.4 Results

Each algorithm with its selected factor settings was rerun with the adaptive system

activated. The adaptive system attempted to control the pace such that the results

of the response variables would �nish within preset target intervals. In the previous

section we selected those response variables and control intervals. This section com-

pares the results of the experiment runs with the adaptive system using the heuristics

described in the previous section.

Utilizing each of the heuristics we were capable of improving the results of each of

the target response variables. Our goal was to increase the number of game sessions

within the target interval for one of the response variables by at least 5 percentage

points. This goal was accomplished for each algorithm set. For the SSS_FLOCK

algorithm we improved the number of games in the target interval from 27.03% to

35.19%. The greatest improvement came from the �rst heuristic we developed which
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initially had 27.87% of game sessions in the target interval and adapted to 39.61%.

The PW_FLOCK adaptive session controlled the score response and showed im-

provement from 24.59% to 30.93%. Finally, the PW_GW adaptive game session

attempted to control both the score and the number of close calls improved from

26.87% to 28.81% for the score and 25.48% to 33.59% for the number of close calls.

Interestingly for the �nal case, we could have selected heuristics which would have

better control over the score response variable. However, the �nal heuristic proved

capable of maintaining the same interval of scores while increasing the number of close

calls. This illustrates the ability to increase the perceived di�culty, while allowing

the player to achieve results within the same score interval.

Algorithm Response Target Interval

SSS_FLOCK Score 1600-2000
SSS_GW Steps 220-265

PW_FLOCK Steps 320-400
PW_GW Score 900-1050

Close Calls 70-120

Table 6.11: Results after the adaptive system has allowed adjustments to occur, the
number of game session in targeted results range has increase for each of the response
variables.

Algorithm Target Interval Below Interval In Interval Above Interval

SSS_FLOCK 1600-2000 440 (+107) 373 (+107) 247 (-173)
SSS_GW 220-265 230 (-97) 408 (+123) 392 (-26)

PW_FLOCK 320-400 348 (-215) 317 (+65) 360 (-150)
PW_GW 900-1050 283 (+84) 286 (+9) 463(-92)

70-120 222 (-12) 344 (+82) 458 (-74)

Table 6.12: Results after the adaptive system has allowed adjustments to occur, the
number of game session in targeted results range has increase for each of the response
variables.

6.5 Adaptive System Summary

The adaptive system portion of the experiment used the results from the factorial

analysis phase to actively adapt the game at set time intervals. This part of the
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study relied on two main design issues, the �rst being the creation of the heuristic

to predict the current level of success for a selected response variable and the second

being the adaptation of a game setting to direct the player's success towards the

targeted interval. Since we designed a simpli�ed version of the adaptive system, we set

our goals to be within an achievable interval given the number of key omissions from

the adaptive system. The development of our heuristics used regression equations on

the assumptions of e�ective performance measures. The creation of these types of

heuristics maybe a more suitable task for machine learning algorithms, as producing

the four heuristics required trials and experimentation.

Overall the results from the adaptive system were positive. We set the goal of

controlling the game sessions to increase the number of sessions in the targeted interval

by 5% percentage points. We accomplished the desired level of result, improving the

number of games within the interval by 5% - 12% points. Although we could have

tuned the heuristics further we felt these results conclusively indicated the potential

of the system. It is important to remember that individual cases are not comparable.

Our results indicate that a greater number of cases of the hand-crafted heuristics

�nished within the target interval. However, each adaptive simulation is a unique

case, containing unique models of the player's performance and di�erent response

variables. As an example, explaining the variation with the PW_GW algorithm

set is more di�cult due to the larger number of factors. Since each case represents

di�erent algorithms, player models and response variable, we are indicating that we

can be adaptive for a variety of cases. but this should not be viewed as promoting

hand-crafted heuristics above regression equations.

In particular the results for the PW_GW algorithm which controlled for the score

and the number of close calls proved to be quite promising. Although we produced

only a small improvement in controlling for the score, we had tremendous success

in improving the number of close calls in the interval. This particular case was

also of interest because it pitted the bene�ts of two response variables against each

other. In certain scenarios, the adaptive system could be unable to select a factor

setting which improved the results of both response variables, similarly it may be



www.manaraa.com

242

forced to select factor setting which comprised the optimal selection of both response

variables to accommodate a cumulative improved response. The �nal point of interest

for adaptation is that current research has already begun having success mapping

multiple response variables to player's emotional states, such as fun or frustration

[57].



www.manaraa.com

243

Chapter 7

Conclusion and Future Work

This chapter highlights the contributions of our experiment and methodology, in ad-

dition we discuss logical methods of progression and potential applications for future

work from the the results of this thesis.

7.1 Contributions

This thesis investigated a methodology of identifying and quantifying signi�cant fac-

tors relating to the di�culty of a video-game. We utilized a factorial analysis approach

which focused on understanding how di�erent factors in�uenced a set of response vari-

ables. The set of the response variables could potentially describe the challenge of

the game, faced by each of the algorithms. Quantifying each of the term's e�ect size

for each response variable was the key step performed during the factorial analysis.

This step allowed the adaptive process to select and adapt appropriate factor settings

to meet the target control interval. After processing the term e�ect size for each

response variable, we built a simple prototype of an adaptive game system to test the

results. Although, we implemented an uncomplicated version of the adaptive system

we managed to produce positive results. Our adaptive system managed to control

the results of selected response variables, signi�cantly increasing the number of game

sessions within target intervals by 5% - 12% points.

The methodology used throughout this thesis for identifying the e�ect sizes of fac-

tors for a number of di�erent response variables provides an important intermediate

and potential preprocessing step between the current existing commercial software

and the goal of a truly adaptive game system. As a preprocessing step this method-

ology can be used to identify factors with little or no signi�cant e�ect on the results.
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These factors could be removed from inclusion in learning algorithms and ignored by

level designers. Our prototype of the adaptive game system illustrates the potential as

an intermediate step, as it allows game factors to be adapted in an online setting but

only to a prede�ned interval of values. This provides the advantage that commercial

games are searching for in pre-release testing, while allowing an adaptive system to

tune to the player's preferences. The adjustment occurred dynamically during game

play and if we increased the number of levels for each factor this method could account

for a additional di�culty levels. In addition, the greater the number of factor levels

the larger the number of situations the system could adapt too. The additional factor

levels would come at an expense of memory usage, but would improve the granularity

of modi�cations and allow a larger selection of players be to represented.

In addition our research is unique in creating a set of response variables for which

adaptation could take place. The majority of research has focused on using a single

response such as score to perform adaptation. Recent research has demonstrated that

the future of adaptive game systems will require multiple sets of response variables to

predict emotional states [32, 57] such as frustration, as such adaptive game systems

will require the ability to adapt for these sets of response variables. Yannakakis and

Hallam's research showed that emotional states can be predicted given a number of

response variables, the combination of our research projects could provide a positive

step toward adaptation for emotional states simply on the basis of response variables,

and being able to control those response variables by altering game factors.

The obvious limitation of this methodology is based on the number of factors,

as the cost of analysis grows exponentially for each additional factor. The limit of

the commercial software was 7-8 factors for a full factorial analysis, however in cases

where minimal interaction between factors is expected a fractional factorial analysis

provides the ability to perform analysis for a higher number of factors. Our analysis

was capable of utilizing properties of the full factorial analysis to go beyond the range

provided by commercial software to 15 factors, although we utilized groups of 10

factors. The commercial limitation of the number of factors for the factorial analysis

and the number of terms for the model in creating R-Sq values limited the scope of
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our analysis. However these steps are not necessary for building this adaptive system,

but may provide useful information for space requirements and the ease of adapting

for response variables.

A potential limitation of calculating term e�ects is that players' abilities and skills

are dynamic and players tend to become better at games as they play more. Thus,

gradually throughout gameplay as the player's skill increases, the term e�ects size will

drift from the original accurate results to inaccurate unless the player model adapts

to re�ect this player progression.

7.2 Future Work

This section discusses potential future work for the area of adaptive gaming systems.

The discussion reviews the factorial analysis approach, as well as future work within

the prototype of the adaptive game system.

7.2.1 Factorial Analysis

As previously mentioned the largest limitation of the factorial analysis methodology

is the exponential growth of calculations that occurs by including additional factors.

To e�ectively integrate the information obtained from the factorial analysis into the

adaptive system, the process should identify and eliminate insigni�cant terms. Factors

should only be removed from the analysis process once shown that they produce

minimal statistical or game signi�cant contributions to a spectrum of players, as they

may be insigni�cant to some players while important to others.

The limitation of utilizing a factorial analysis for simple game parameters such

as vision range would quickly become overwhelmed if implemented in a larger game

setting. Areas, in which this analysis method could prove useful occur in speci�c

small reoccurring scenarios of games, such as platform jumping or target aiming. In

addition, this method could prove e�ective with higher level or generalized factors

such as player aggression or stealth, instead of very low-level values like vision range.

Generalized factors could encompass a larger set of factor or even be represented by
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di�erent algorithms.

Initially, during an exploratory stage of our research we tested multiple commercial

software statistical packages. During, this exploratory stage we tested Minitab, SPSS

and R statistical packages. Our testing, found Minitab to have an improved user-

interface and was computationally faster for a factorial design, than SPSS. The R

statistical program along with the factorial design package AlgDesign, showed to

initially be unable to handle data sets of the magnitude of our experiment. Due

this fact and the steeper learning curve of R, we ultimately selected Minitab as our

statistical package for our experimental analysis. However, a recent commercial R

library released in 2011 claims to be capable of handling statistical experiments of

this size [4]. The Revolution R Enterprise is speci�cally designed for scalable data

set, and provides a video demonstration of a linear regression and prediction on a

13GB and 120 million-row data set [4]. Further, experimentation of this Revolution

R program may ease the methodology of this size of experiment, the practically of

implementation and ease the presentation of the results.

7.2.2 Online User Observation

In our research, the player actions were simulated via a static algorithm, the tracking

information is basically equivalent in an online setting. The process should be moved

to an online setting to gain a larger spectrum of players and test cases. In addition,

observing the gameplay of real players would allow players to be clustered based on

attributes and response results. That information could be used to create generalized

understanding of performance, as well as de�ne player types for the game and possibly

tracking progression from beginner to experienced players. Potentially, a player pro�le

would be created for all players, performance could be logged and the information

stored and analyzed o�ine. In an o�ine setting, a factorial analysis could be used

to identify game signi�cant factors, which could be stored and re-evaluated over

the duration of their play. If this information was available, it could be utilized in

conjunction with information from the player pro�le, such as reaction speed, gender

or experience with the game genre. From this information of player preferences and
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factor game signi�cance, we could produce informative player models. These player

models would have adequate information to adjust the game based on general player

psychological preferences, but also based on an individual factor level.

The ultimate goal of an adaptive system is to produce a state of optimal immersion

or Flow, by understanding the relationship between our factors e�ect on response

variables and the relationship of those response variables to emotional states. In

doing so, we can give developers the additional tools needed to promote the emotional

reaction they want to achieve. Our research has focused on the within-subject design,

meaning we investigate sections of the player's gameplay under a variety of situations.

To help players achieve and retain a state of Flow during their game session, the

adaptive system requires a method with knowledge of transitioning the player to new

game elements and challanges. Future work with online players should also address

between-subject design, as the transition of the player's emotional state and their own

natural progression will play an important role in predicting future player models and

how those models will adapt.

A potential approach to integrate our methodology with the transitional progres-

sion of the player is to consider all information as unique static player models within

a database. Storing the player factor information at regular intervals provides an

additional method of performing prediction, about how a player might transition.

Each time we evaluate the player's state we explore player pro�les that are similar to

the current player either in player ability or e�ect on response variables. Clustering

these player models allows a comparison between players with similar game signi�cant

terms and/or between the player's topology. All of this information progresses to-

wards a system which is capable of predicting based on pro�le and game play. Player

models could then predict factors to modify or reevaluate their accuracy based on the

transitional path of other players in their cluster.

Online user observation is the �rst step toward integrating this methodology with

research that maps response variables to emotional states of players and producing

improved player models. Future work could integrate the research predicting emo-

tional state from questionnaires [32, 57]. This progression could ideally produce an
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improved understanding between emotional states and a set of game factors. Addi-

tionally, the combination of each methodology would allow greater control in creating

and altering speci�c emotional responses. Identifying emotional state is and impor-

tant area for future research as we need to be able validate whether our player models

are contributing to produce the correct emotional states. The emotional state of the

player should be integrated with the research of player typologies to identify any

potential patterns from players during speci�c emotional states.

7.2.3 Adaptive Game System

In the development of the adaptive system prototype one of the key elements was the

ability to assess the player skill level and accurately predict performance. Predicting

the performance allowed the correct adjustment to be made to reach the targeted

response goals. Our research used two methods to produce heuristics to predict

performance; the �rst was hand crafted heuristics based on performance measures

and the second used regression equations from the simulation information. These

methods produced adequate results for our requirements, although future work should

investigate this task by implementing machine learning algorithms. This problem is

well suited to machine learning due to the high complexity of these functions, as well

as the dynamic aspect of a player's natural experience progression.

The progression of adaptation is another area for potential work within the adap-

tive game system. We developed a method of identifying and quantifying a term's

e�ect on a response variable, little research exists which investigates the rate of which

adaptation should occur. The rate of adaptation becomes a predominant aspect in

the adaptive system because it would limit the opportunities of mistakes from over-

correcting the di�culty and would maintain the sense of believability for the player

who may notice drastic alterations to the level of di�culty.

Our prototype adapted the game to settings previously viewed in the simulation

phase of the experiment which is ideal for level designers and game testers, as dynamic

aspect of the game can be tested but also provide a range of of challenge. Increasing

the number of factor levels slightly increases the complexity of the analysis, but if the
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factorial design included 3 levels it would allow a game designer to analyze factors in

the traditional easy, medium and hard scenario. To develop a truly adaptive game

system, our system would need to interpolate and extrapolate the data to include

unobserved factor level values. Future research may consider performing multiple runs

of the simulation phase with di�erent factor levels to reduce the range of observed

data which could potentially decrease errors while calculating unseen values.

7.2.4 Commercial Implementation

This research focused on producing results which could be applicable to both academic

and commercial areas of gaming. Particularly, during the analysis and prototype

phases we emphasized how our design could easily integrate into current commercial

games. The methodology proposed in our research could be used several ways to

improve commercial game development. First, the factorial analysis phase can be used

to test new game mechanic and additionally to balance selected mechanics or levels.

Additionally, the mechanics of factorial analysis create a within-subject snapshot of

how the factors e�ect the player's performance on a set of response variables. The

methodology of this research, can be used to test new features or balance the game

but the game must be within a stable state, as parameters which implicitly alter

the results must remain consistent for the results to be useful. The generalization,

modularity and independence of the analysis system allows for quick integration for

testing and easy removal before product release.

In terms of the commercial software pipeline our research methodology provides

greater use toward the completion of the project as a larger number of game mechanics

and design decisions become �xed. Portions of the adaptive game system should use

machine learning techniques to adapt to the players. As previously mentioned, this

methodology could be used to generate snap-shots of the player's performance at

certain intervals; these snapshots are only e�ective if the algorithms used remain

relatively consistent with their decision process throughout the analysis phase. In

addition, the analysis for any machine learning algorithms used for the NPC behaviour

should be analyzed after the learning phase and before setting the �nal behaviours
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for release.

7.3 Conclusions

Our research investigated a methodology to identify game factors which altered the

simulated player's performance on a set of response variables. The overall objective

of our research is to contribute to the practical implementation of the AGS model

by understanding how to adapt the game to particular individuals and by measuring

the e�ectiveness of those adaptations. Understanding how modi�cations of the game

a�ect the player's performance is the �rst step toward understanding how modi�ca-

tions of the game a�ect the player's emotional state and investment. Future research

within this area will need to focus on the relationship between game factors and

emotional states to engage and promote highly immersive states. Our research has

demonstrated the ability to understand how each factor e�ects the player's perfor-

mance. Our results indicated that a small consistent set of factors played prominent

roles in altering the performance of the player for all response variables. Although,

intuitively, a number of these factors could be predicted as being prominent factors

it is important to rank these factors. In addition, the strength of this analysis is not

only to identify important factors but also to demonstrate which factors have minimal

impact on the game.

The results of the Pac-Man analysis indicates that the vision of the ghosts and Pac-

Man along with the �ee and death times played the most prominent roles. However,

we also identi�ed that the perceived value of the fruit played a minimal role for the

SSS-AB* player, while the perceived value of the fruit was of greater importanace

to PW algorithms based players. The analysis provided interesting results for the

interaction of game factors and which algorithms produced emergent behaviour. This

type of information can be di�cult to discover during testing and can be valuable for

game designers to understand high levels of unintended di�culty. The analysis also

highlighted interesting properties relating to the perceived level of challenge; when the

player engaged in bonus tasks it often resulted in a diminished overall performance
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rather than additional points scored by the player. This type of information could

help designers strategically place bonus items or tasks in areas with lower levels of

interest rather than challenging areas.

As previously discussed, the e�ectiveness of this methodology is highly dependent

on the ability to compute a large number of factors e�ciently. The large number of

games required for simulation helps with testing and identifying imbalances within

the game. Commercially, this methodology is e�ective for testing new features and

tuning �nal factor setting for release. It can be easily integrated into commercial

products during the testing phase and due to the independence and modularity of

this sub-system it can be easily removed before the product is release. In addition, the

analysis phase is completely independent of the factors level values, so it can be used

without modi�cation for a wide variety of games. Due to the fact, that either NPC or

level factors can be modi�ed and observed with this analysis this methodology o�ers

the ability to make design decisions based on overall game design issues or temporary

issues such as opponent behaviour.

Finally, the strength of this analysis method is based on the implicitly de�ned

aspect of the player model and the factor e�ects on each response variable. This

methodology will improve researchers' ability to compare, cluster and generalize per-

formance of di�erent player types. This type of information will aid designers to

drawing conclusions about the e�ects of their design decisions and predicting impact

on di�erent player types. The analysis method we experimented with during this

thesis has shown to be successful toward understanding and adapting the game's

factors. The trade-o�s for this experiment have been the di�culty in working with

large number of factors and the o�ine nature of the experiment. However, we feel

the methodology has shown to be a positive progressive step toward improving and

understanding game balancing and adaptive gaming. Adaptive gaming still has a

large number of di�cult issues to address for future research, however building on the

results of our research we can now progress toward connecting the emotional state of

the player to modi�cations of the game. This information brings us one step closer to

the goal of creating targeted emotional responses from the modi�cation of a few game
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factors. Understanding and creating the precise intended emotional state of the player

helps engage the player and allows the game to meet the emotional requirements of

the player which is vital to creating the optimal state of Flow.
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Appendix A

Factor E�ects

A.1 SSS_FLOCK Factor E�ects

This section provides a detailed view of a maximum of 127 terms included in each

SSS_FLOCK response variable model. The �rst table presents the size of the con-

�dence intervals for each response variable. If the absolute value of the regression

coe�cient is below these value it was not statistically signi�cant. The models used

a 95% con�dence interval or α = 0.05 to test statistically signi�cant values. Each

section provides two tables, the �rst table presents the main e�ects and their e�ect

size. The second table illustrates the e�ect sizes of the remaining terms that were

included in the model.

Response Statistical Signi�cant E�ect Size

Score 21.33

Steps 3.38

Levels Complete 0.01

Close Calls 2.08

Fruit Created 0.06

Fruit Eaten 0.02

Ghosts Eaten 0.04

Power-Pellets Collected 0.05

Tokens Collected 1.90769

Repeated Squares 1.51895

Table A.1: SSS_FLOCK Con�dence Intervals value
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A.1.1 SSS_FLOCK Close Calls Model Terms

Main E�ects E�ect Size Interactions E�ect Size

FLEE_TIME (A) -18.71 A*E*F*I 14.20

DEATH_TIME (B) 3.00 G*J 14.03

FRUIT_TIME (C) -2.07 A*D*E*F -12.24

FLOCK_SEP (D) -10.03 B*D*E*F*I -11.98

FLOCK_ALI (E) -9.20 D*G*J 11.97

FLOCK_COH (F) -9.20 E*J -11.84

FLOCK_HUNGER (G) 36.27 F*J -11.84

SSS_PERCEIVED_FRUIT (H) 0.99 A*B*I -11.67

PAC_VIS_LEN (I) 7.01 B*I 11.53

GH_VIS_LEN (J) -20.36 G*I*J 11.15

B*E*G -10.71

B*F*G -10.71

A*E*F*I*J 10.64

D*E*F*I -10.58

B*G -10.27

A*B*I*J 10.18

A*B*D*J -9.73

E*F*G*J 8.93

B*D*G*I*J -8.78

E*G -8.63

F*G -8.63

Table A.2: The main e�ects and a portion of the largest e�ect sizes included in

SSS_Flock model for the response variable Close Calls.
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A.1.2 SSS_FLOCK Fruits Eaten Model Terms

Main E�ects E�ect Size Interactions E�ect Size

FLEE_TIME (A) 0.01 D*E*F*G*I*J -0.11

DEATH_TIME (B) 0.06 A*E*F*G*I*J 0.10

FRUIT_TIME (C) 0.25 A*B*J 0.10

FLOCK_SEP (D) 0.08 A*E*F*J 0.10

FLOCK_ALI (E) 0.02 I*J -0.10

FLOCK_COH (F) 0.02 A*G*J 0.08

FLOCK_HUNGER (G) 0.00 D*E*F -0.08

SSS_PERCEIVED_FRUIT (H) 0.08 D*E*F*G 0.08

PAC_VIS_LEN (I) 0.08 B*D*E*F*I -0.08

GH_VIS_LEN (J) -0.18 A*D*E*F*G*I*J 0.08

A*G*I*J -0.07

A*B*E*F*G -0.07

B*E*F*G*I*J -0.07

A*D -0.07

B*E*G*J -0.07

B*F*G*J -0.07

A*B*D*E*F*J -0.06

E*F*J 0.06

D*E*I*J -0.06

D*F*I*J -0.06

A*D*I*J 0.06

E*F -0.06

Table A.3: The main e�ects and a portion of the largest e�ect sizes included in

SSS_Flock model for the response variable Fruit Eaten.
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A.1.3 SSS_FLOCK Ghosts Eaten Model Terms

Main E�ects E�ect Size Interactions E�ect Size

FLEE_TIME (A) 0.73 D*G*J 0.44

DEATH_TIME (B) -0.05 A*E*F 0.26

FRUIT_TIME (C) 0.03 A*E*F*I 0.25

FLOCK_SEP (D) 0.23 B*G*I 0.23

FLOCK_ALI (E) -0.13 B*D*G*J -0.21

FLOCK_COH (F) -0.13 E*F*J 0.21

FLOCK_HUNGER (G) -0.05 D*E*F*G*J -0.20

SSS_PERCEIVED_FRUIT (H) 0.10 A*D*G*I*J -0.19

PAC_VIS_LEN (I) -0.33 D*I 0.19

GH_VIS_LEN (J) -0.18 B*E*F*I -0.18

D*E*F*I -0.18

B*D*G -0.18

B*E*G*I 0.18

B*F*G*I 0.18

A*D*E*F*G*I 0.18

D*E*F*I*J -0.17

A*B*D*E*F*G*J 0.17

A*E*I 0.17

A*F*I 0.17

D*E*F*J 0.17

B*I 0.16

B*E*F*G*J 0.16

D*G 0.16

Table A.4: The main e�ects and a portion of the largest e�ect sizes included in

SSS_Flock model for the response variable Ghosts Eaten.
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A.1.4 SSS_FLOCK Levels Completed Model Terms

Main E�ects E�ect Size Interactions E�ect Size

FLEE_TIME (A) 0.07 A*E*F*I 0.10

DEATH_TIME (B) 0.05 E*F -0.08

FRUIT_TIME (C) -0.01 B*D*E*F*I*J -0.08

FLOCK_SEP (D) 0.02 E*F*G*I -0.07

FLOCK_ALI (E) 0.02 A*D*G*I*J -0.07

FLOCK_COH (F) 0.02 A*D*E*F*G*I 0.07

FLOCK_HUNGER (G) 0.06 D*I 0.07

SSS_PERCEIVED_FRUIT (H) 0.00 B*D*I*J 0.07

PAC_VIS_LEN (I) 0.15 E*J -0.06

GH_VIS_LEN (J) -0.19 F*J -0.06

D*E*F*I -0.06

I*J -0.06

A*E*G*J -0.06

A*F*G*J -0.06

B*D*E*F*I -0.06

D*I*J 0.06

A*E*G -0.06

A*F*G -0.06

B*D*E*F -0.05

B*D*E -0.05

B*D*F -0.05

D*G*I 0.05

Table A.5: The main e�ects and a portion of the largest e�ect sizes included in

SSS_Flock model for the response variable Levels Completed.
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A.1.5 SSS_FLOCK Power-Pellets Collected Model Terms

Main E�ects E�ect Size Interactions E�ect Size

FLEE_TIME (A) 0.36 D*E*F*I -0.33

DEATH_TIME (B) 0.20 E*F*G*I -0.32

FRUIT_TIME (C) 0.00 A*E*F*I 0.32

FLOCK_SEP (D) 0.03 D*I 0.31

FLOCK_ALI (E) 0.04 D*G*I*J 0.31

FLOCK_COH (F) 0.04 I*J -0.30

FLOCK_HUNGER (G) 0.14 E*F -0.29

SSS_PERCEIVED_FRUIT (H) -0.01 D*E*F*J 0.29

PAC_VIS_LEN (I) 0.65 A*D*G*I*J -0.26

GH_VIS_LEN (J) -0.67 A*E*F*I*J 0.25

B*D*E*F*I*J -0.24

B*E*F*G*J 0.24

E*J -0.24

F*J -0.24

A*E*F*J 0.24

E*F*G*J 0.21

A*D*G -0.21

D*G*J 0.21

A*B*D*E*F*G 0.20

A*D*I*J 0.20

G*I*J 0.20

B*D*E -0.20

B*D*F -0.20

D*G*I 0.20

Table A.6: The main e�ects and a portion of the largest e�ect sizes included in

SSS_Flock model for the response variable Power-Pellets Collected.
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A.1.6 SSS_FLOCK Repeated Squares Model Terms

Main E�ects E�ect Size Interactions E�ect Size

FLEE_TIME (A) 7.52 D*G*J 12.46

DEATH_TIME (B) 4.55 B*D*E*F*I*J -11.03

FRUIT_TIME (C) -0.14 A*E*F*I 10.57

FLOCK_SEP (D) 3.20 I*J -9.73

FLOCK_ALI (E) 0.16 D*G*I*J 9.41

FLOCK_COH (F) 0.16 B*D*I*J 9.00

FLOCK_HUNGER (G) 7.35 B*J -8.88

SSS_PERCEIVED_FRUIT (H) -0.78 E*J -7.94

PAC_VIS_LEN (I) 11.13 F*J -7.94

GH_VIS_LEN (J) -20.17 A*E*F*J 7.84

A*D*E*F*G*J 7.78

A*D*E*F -7.46

D*E*F*I -7.35

A*B 6.84

A*B*D*E*F -6.61

G*J 6.40

A*B*D*J -6.07

A*D*G*I*J -6.00

A*B*I -5.73

B*D*E*F -5.57

D*E*F*J 5.48

D*I 5.44

Table A.7: The main e�ects and a portion of the largest e�ect sizes included in

SSS_Flock model for the response variable Repeated Squares.



www.manaraa.com

260

A.1.7 SSS_FLOCK Score Model Terms

Main E�ects E�ect Size Interactions E�ect Size

FLEE_TIME (A) 194.39 A*E*F*I 144.63

DEATH_TIME (B) 79.46 A*D*G*I*J -126.66

FRUIT_TIME (C) 30.52 D*I 119.98

FLOCK_SEP (D) 52.56 D*G*J 118.58

FLOCK_ALI (E) 12.05 E*F -116.43

FLOCK_COH (F) 12.05 D*E*F*I -116.38

FLOCK_HUNGER (G) 69.31 E*F*G*I -116.08

SSS_PERCEIVED_FRUIT (H) 0.86 B*D*E*F*I*J -108.71

PAC_VIS_LEN (I) 242.68 I*J -107.21

GH_VIS_LEN (J) -304.10 D*G*I*J 98.84

D*E*F*J 96.39

E*J -93.41

F*J -93.41

A*E*G -93.27

A*F*G -93.27

A*E*G*J -91.46

A*F*G*J -91.46

A*D*E*F*G*I 91.24

A*E*F*J 89.27

B*D*E -87.52

B*D*F -87.52

B*E*F*G*J 86.06

Table A.8: The main e�ects and a portion of the largest e�ect sizes included in

SSS_Flock model for the response variable Score.
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A.1.8 SSS_FLOCK Steps Model Terms

Main E�ects E�ect Size Interactions E�ect Size

FLEE_TIME (A) 22.87 A*E*F*I 23.08

DEATH_TIME (B) 13.01 D*G*J 22.17

FRUIT_TIME (C) -0.46 B*D*E*F*I*J -21.79

FLOCK_SEP (D) 4.15 I*J -20.86

FLOCK_ALI (E) 2.64 D*G*I*J 20.26

FLOCK_COH (F) 2.64 D*E*F*I -18.63

FLOCK_HUNGER (G) 15.65 E*J -17.86

SSS_PERCEIVED_FRUIT (H) -1.49 F*J -17.86

PAC_VIS_LEN (I) 35.38 A*D*G*I*J -17.81

GH_VIS_LEN (J) -48.58 D*I 17.56

A*E*F*J 17.43

B*J -16.78

B*D*I*J 16.74

E*F*G*I -15.97

D*E*F*J 15.43

E*F -14.40

A*B*D*E*F -14.23

G*I*J 13.72

B*D*E*F -13.30

B*D*E -13.22

B*D*F -13.22

A*B*D*E*F*G 13.04

Table A.9: The main e�ects and a portion of the largest e�ect sizes included in

SSS_Flock model for the response variable Steps.
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A.1.9 SSS_FLOCK Tokens Collected Model Terms

Main E�ects E�ect Size Interactions E�ect Size

FLEE_TIME (A) 14.99 A*E*F*I 12.19

DEATH_TIME (B) 8.26 D*I 11.81

FRUIT_TIME (C) -0.32 E*F*G*I -11.66

FLOCK_SEP (D) 0.92 A*D*G*I*J -11.56

FLOCK_ALI (E) 2.43 D*E*F*I -10.95

FLOCK_COH (F) 2.43 I*J -10.83

FLOCK_HUNGER (G) 8.15 D*G*I*J 10.55

SSS_PERCEIVED_FRUIT (H) -0.69 B*D*E*F*I*J -10.52

PAC_VIS_LEN (I) 23.61 E*F -10.20

GH_VIS_LEN (J) -27.75 E*J -9.67

F*J -9.67

D*E*F*J 9.66

D*G*J 9.50

A*E*F*J 9.36

G*I*J 8.20

A*B*D*E*F*G 8.04

A*E*F*I*J 8.01

B*D*E -7.85

B*D*F -7.85

A*E*G*J -7.75

A*F*G*J -7.75

B*J -7.72

Table A.10: The main e�ects and a portion of the largest e�ect sizes included in

SSS_Flock model for the response variable Tokens collected.
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A.2 SSS_GW Factor E�ects

This section provides a detailed view of the statistically signi�cant terms included

in each SSS_FLOCK response variable model. The �rst table, Table A.11 presents

the size of the con�dence intervals for each response variable. If the absolute value

of the regression coe�cient is below these value it was not statistically signi�cant.

The models used a 95% con�dence interval or α = 0.05 to test statistically signi�cant

values. Each section provides a table that presents the statically signi�cant main

e�ects and 2-factor interactions and their e�ect sizes.

Response Statistical Signi�cant E�ect Size

Score 5.21
Steps 0.79

Levels Complete 0.003
Close Calls 0.87
Fruit Created 0.01
Fruit Eaten 0.004
Ghosts Eaten 0.01

Power-Pellets Collected 0.01
Tokens Collected 0.42
Repeated Squares 0.40

Table A.11: SSS_GW Con�dence Intervals value
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A.2.1 SSS_GW Close Calls Model Terms

Main E�ects E�ect Size 2-Factor Interactions E�ect Size

GW_TOKEN (A) * A*D 1.81

GW_PP (B) * A*F 1.17

GW_FT (C) -1.33 A*G 1.41

GW_PAC (D) 1.86 B*D 1.21

GW_PAC_DIR (E) 4.99 B*G -2.29

GW_AWAY_GH (F) -13.74 B*H 1.86

GW_TO_GH (G) -3.76 B*I 3.89

FLEE_TIME (H) -6.04 B*J -3.27

DEATH_TIME (I) 4.23 C*D -1.06

GH_VIS_LEN (J) 20.96 C*I -1.47

D*E -0.94

E*J -2.30

F*I -2.50

F*J -5.10

G*H -1.88

G*I -1.84

H*I 3.80

I*J 4.04

Table A.12: The statistically signi�cant Main E�ects for SSS_GW Close Calls. Ef-

fects marked with * are not statistically signi�cant but are included because their

term interacts in a statistically signi�cant way with another factor.
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A.2.2 SSS_GW Fruits Eaten Model Terms

Main E�ects E�ect Size 2-Factor Interactions E�ect Size

GW_TOKEN (A) * A*H 0.00

GW_PP (B) * B*E 0.00

GW_FT (C) * B*F 0.00

GW_PAC (D) * B*G -0.01

GW_PAC_DIR (E) 0.00 B*H -0.01

GW_AWAY_GH (F) -0.01 C*D 0.00

GW_TO_GH (G) -0.01 C*G 0.00

FLEE_TIME (H) 0.01 D*G 0.00

DEATH_TIME (I) 0.01 E*J 0.00

GH_VIS_LEN (J) -0.05 F*G 0.01

F*H 0.00

F*I -0.01

G*H -0.01

I*J -0.01

Table A.13: The statistically signi�cant Main E�ects for SSS_GW Fruit Eaten. Ef-

fects marked with * are not statistically signi�cant but are included because their

term interacts in a statistically signi�cant way with another factor.
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A.2.3 SSS_GW Ghosts Eaten Model Terms

Main E�ects E�ect Size 2-Factor Interactions E�ect Size

GW_TOKEN (A) -0.04 B*E 0.02

GW_PP (B) -0.02 B*F -0.08

GW_FT (C) * B*G -0.09

GW_PAC (D) -0.11 B*H -0.03

GW_PAC_DIR (E) -0.08 B*I 0.04

GW_AWAY_GH (F) -0.31 B*J 0.03

GW_TO_GH (G) -0.12 D*E 0.02

FLEE_TIME (H) 0.18 D*F -0.01

DEATH_TIME (I) -0.03 D*G 0.05

GH_VIS_LEN (J) 0.58 D*H 0.02

D*I -0.01

D*J -0.05

E*G 0.02

E*H -0.03

E*J -0.01

F*G -0.06

F*H -0.05

F*I 0.05

F*J -0.16

G*H -0.02

G*I -0.02

H*J -0.17

I*J -0.05

Table A.14: The statistically signi�cant Main E�ects for SSS_GW Ghosts Eaten.

E�ects marked with * are not statistically signi�cant but are included because their

term interacts in a statistically signi�cant way with another factor.
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A.2.4 SSS_GW Levels Completed Model Terms

Main E�ects E�ect Size 2-Factor Interactions E�ect Size

GW_TOKEN (A) 0.008 A*B 0.007

GW_PP (B) 0.01 A*D 0.005

GW_FT (C) * A*F 0.004

GW_PAC (D) 0.004 A*G 0.003

GW_PAC_DIR (E) * B*D 0.006

GW_AWAY_GH (F) -0.03 B*F 0.006

GW_TO_GH (G) -0.01 B*G -0.005

FLEE_TIME (H) 0.02 B*I 0.004

DEATH_TIME (I) 0.02 B*J -0.011

GH_VIS_LEN (J) -0.04 C*D -0.005

C*F -0.004

C*G -0.004

C*I -0.004

D*G 0.004

D*H 0.005

D*I 0.004

D*J 0.003

E*J -0.007

F*I -0.005

F*J -0.004

G*H -0.006

G*I -0.013

G*J 0.007

H*I 0.012

Table A.15: The statistically signi�cant Main E�ects for SSS_GW Levels Completed.

E�ects marked with * are not statistically signi�cant but are included because their

term interacts in a statistically signi�cant way with another factor.



www.manaraa.com

269

A.2.5 SSS_GW Power-Pellets Collected Model Terms

Main E�ects E�ect Size 2-Factor Interactions E�ect Size

GW_TOKEN (A) -0.02 A*B 0.02

GW_PP (B) 0.03 A*D 0.01

GW_FT (C) * A*F 0.02

GW_PAC (D) * A*G 0.01

GW_PAC_DIR (E) 0.01 A*H -0.01

GW_AWAY_GH (F) -0.13 B*D 0.01

GW_TO_GH (G) -0.05 B*G -0.02

FLEE_TIME (H) 0.11 B*I 0.02

DEATH_TIME (I) 0.10 B*J -0.06

GH_VIS_LEN (J) -0.18 C*D -0.01

C*G -0.01

C*I -0.01

D*G 0.01

E*I -0.01

E*J -0.02

F*J -0.01

G*H -0.02

G*I -0.04

G*J 0.02

H*I 0.01

I*J 0.03

Table A.16: The statistically signi�cant Main E�ects for SSS_GW Power-Pellets

Collected. E�ects marked with * are not statistically signi�cant but are included

because their term interacts in a statistically signi�cant way with another factor.
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A.2.6 SSS_GW Repeated Squares Model Terms

Main E�ects E�ect Size 2-Factor Interactions E�ect Size

GW_TOKEN (A) * A*B 0.72

GW_PP (B) 1.85 A*D 0.72

GW_FT (C) -0.60 A*G 0.87

GW_PAC (D) * A*J -0.50

GW_PAC_DIR (E) 0.41 B*D 0.69

GW_AWAY_GH (F) -3.13 B*G -0.94

GW_TO_GH (G) -1.14 B*I 1.16

FLEE_TIME (H) 3.58 B*J -2.90

DEATH_TIME (I) 3.49 C*D -0.48

GH_VIS_LEN (J) -9.43 C*I -0.77

D*G 0.90

E*J -1.21

F*I -0.56

F*J -1.05

G*H -1.09

G*I -1.06

H*I 1.58

Table A.17: The statistically signi�cant Main E�ects for SSS_GW Repeated Squares.

E�ects marked with * are not statistically signi�cant but are included because their

term interacts in a statistically signi�cant way with another factor.
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A.2.7 SSS_GW Score Model Terms

Main E�ects E�ect Size 2-Factor Interactions E�ect Size

GW_TOKEN (A) -12.84 A*B 8.09

GW_PP (B) 13.47 A*D 7.32

GW_FT (C) * A*F 5.91

GW_PAC (D) -7.67 A*G 5.80

GW_PAC_DIR (E) -6.59 B*D 6.70

GW_AWAY_GH (F) -78.11 B*G -19.02

GW_TO_GH (G) -29.70 B*H -7.93

FLEE_TIME (H) 55.57 B*I 12.48

DEATH_TIME (I) 31.55 B*J -17.74

GH_VIS_LEN (J) -20.78 C*D -7.16

C*G -5.48

C*I -7.81

D*G 12.92

D*H 7.31

E*J -13.36

F*H -8.87

F*J -20.35

G*H -15.00

G*I -21.15

G*J 8.84

H*I 15.80

H*J -16.42

Table A.18: The statistically signi�cant Main E�ects for SSS_GW Score. E�ects

marked with * are not statistically signi�cant but are included because their term

interacts in a statistically signi�cant way with another factor.
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A.2.8 SSS_GW Steps Model Terms

Main E�ects E�ect Size 2-Factor Interactions E�ect Size

GW_TOKEN (A) * A*B 1.51

GW_PP (B) 3.86 A*D 1.43

GW_FT (C) -0.82 A*F 0.95

GW_PAC (D) * A*G 1.48

GW_PAC_DIR (E) * B*D 1.22

GW_AWAY_GH (F) -8.24 B*G -1.74

GW_TO_GH (G) -2.65 B*I 2.21

FLEE_TIME (H) 8.22 B*J -5.87

DEATH_TIME (I) 7.59 C*D -1.01

GH_VIS_LEN (J) -18.98 C*I -1.57

D*G 1.69

E*I -0.87

E*J -2.40

F*I -0.84

F*J -1.46

G*H -2.28

G*I -2.84

G*J 0.86

H*I 3.07

I*J 1.10

Table A.19: The statistically signi�cant Main E�ects for SSS_GW Steps. E�ects

marked with * are not statistically signi�cant but are included because their term

interacts in a statistically signi�cant way with another factor.
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A.2.9 SSS_GW Tokens Collected Model Terms

Main E�ects E�ect Size 2-Factor Interactions E�ect Size

GW_TOKEN (A) -0.84 A*B 0.76

GW_PP (B) 1.98 A*D 0.69

GW_FT (C) * A*F 0.65

GW_PAC (D) * A*G 0.59

GW_PAC_DIR (E) * B*D 0.50

GW_AWAY_GH (F) -4.98 B*F 0.44

GW_TO_GH (G) -1.46 B*G -0.76

FLEE_TIME (H) 4.52 B*H -0.43

DEATH_TIME (I) 4.00 B*I 1.02

GH_VIS_LEN (J) -9.36 B*J -2.90

C*D -0.51

C*G -0.44

C*I -0.78

D*G 0.77

E*I -0.49

E*J -1.16

G*H -1.16

G*I -1.73

G*J 1.09

H*I 1.47

I*J 0.72

Table A.20: The statistically signi�cant Main E�ects for SSS_GW Tokens Collected.

E�ects marked with * are not statistically signi�cant but are included because their

term interacts in a statistically signi�cant way with another factor.
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A.3 PW_FLOCK Factor E�ects

This section illustrates the values calculated for the con�dence intervals for the

PW_FLOCK models. The models used a 95% con�dence interval or α = 0.05 to

test statistically signi�cant values.

Response Statistical Signi�cant E�ect Size

Score 1.69
Steps 0.39

Levels Complete 0.001
Close Calls 0.29
Fruit Created 0.006
Fruit Eaten 0.0017
Ghosts Eaten 0.003

Power-Pellets Collected 0.004
Tokens Collected 0.15
Repeated Squares 0.28

Table A.21: PW_FLOCK Con�dence Intervals value

A.4 PW_GW Factor E�ects

This section illustrates the values calculated for the con�dence intervals for the

PW_FLOCK models. The models used a 95% con�dence interval or α = 0.05 to

test statistically signi�cant values.

Response Statistical Signi�cant E�ect Size

Score 0.41
Steps 0.14

Levels Complete 0.0002
Close Calls 0.125
Fruit Created 0.0023
Fruit Eaten 0.0006
Ghosts Eaten 0.0014

Power-Pellets Collected 0.001
Tokens Collected 0.03
Repeated Squares 0.12

Table A.22: PW_GW Response variables Con�dence Intervals values.
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Appendix B

Model Error

This Appendix section presents the results of the lack-of-�t test and the residual and

pure error terms for the each model. Each table presents the results for all separated

game sessions for a single response variable. Information presented in tables are

displayed in the following format: the GameID, the separated factor, the sum of

squares Lack of Fit score (SSLOF), the sum of squares Residual Error(SSRE), the

sum of squares Pure Error(SSPE), the f-value and the p-value.

B.1 SSS_FLOCK Model Error

The separated factor for the SSS_FLOCK algorithm is the frequency of the fruit

creation (FRUIT_FREQ). The GameID indicates whether a factor used a high or

low level for the experimental run. In this case GameID 0 indicates low level value

was used while GameID 1 indicates a high level value was used in the experiment.

GameID SSLOF SSRE SSPE F-Value P-Value

0 1814721 21515666 19700944 0.21 1
1 2600082 23060107 20460026 0.29 1

Table B.1: Model Error and Lack of Fit Results for algorithm SSS_FLOCK and
response variable Close Calls (CC).

GameID SSLOF SSRE SSPE F-Value P-Value

0 113.77 792.44 678.66 0.38 1
1 276.26 2336.93 2060.66 0.31 1

Table B.2: Model Error and Lack of Fit Results for algorithm SSS_FLOCK and
response variable the number of fruit eaten (FE).
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GameID SSLOF SSRE SSPE F-Value P-Value

0 613.80 9348.46 8734.67 0.16 1
1 848.40 8622.40 7774.00 0.25 1

Table B.3: Model Error and Lack of Fit Results for algorithm SSS_FLOCK and
response variable the number of fruit eaten (FE).

GameID SSLOF SSRE SSPE F-Value P-Value

0 78.86 912.86 834 0.22 1
1 106.74 1006.75 900 0.27 1

Table B.4: Model Error and Lack of Fit Results for algorithm SSS_FLOCK and
response variable the number of levels completed (LVL_COMP).

GameID SSLOF SSRE SSPE F-Value P-Value

0 1033.73 12496.4 11462.67 0.21 1
1 1392.92 12970.3 11577.33 0.28 1

Table B.5: Model Error and Lack of Fit Results for algorithm SSS_FLOCK and
response variable the number of power-pellets eaten(PP).

GameID SSLOF SSRE SSPE F-Value P-Value

0 988545.74 11551580 10563034.62 0.21 1
1 1143948.26 12037831 10893883.06 0.24 1

Table B.6: Model Error and Lack of Fit Results for algorithm SSS_FLOCK and
response variable the number of repeated squares (RSQ).

GameID SSLOF SSRE SSPE F-Value P-Value

0 177835365.59 2162864245 1985028878.92 0.20 1
1 255245093.24 2504227491 2248982397.75 0.26 1

Table B.7: Model Error and Lack of Fit Results for algorithm SSS_FLOCK and
response variable the player's score (Sc).

GameID SSLOF SSRE SSPE F-Value P-Value

0 4681461.58 57523688 52842226.24 0.20 1
1 5838768.61 59039345 53200576.62 0.25 1

Table B.8: Model Error and Lack of Fit Results for algorithm SSS_FLOCK and
response variable the player's score (St).

GameID SSLOF SSRE SSPE F-Value P-Value

0 1512354.35 18324393 16812039.03 0.21 1
1 1936172.67 18969312 17033139.05 0.26 1

Table B.9: Model Error and Lack of Fit Results for algorithm SSS_FLOCK and
response variable the number of tokens collected (TO).
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B.2 SSS_GW Model Error

The four separated factors for the SSS_GW algorithm are: the perceived value of the

fruit (SSS_PERCEIVED_FRUIT), the frequency of the fruit creation (FRUIT_FREQ),

the time the fruit was available on screen (FRUIT_TIME) and �nally the range of

Pac-Man's vision (PAC_VIS_LEN). The GameID indicates whether a factor used a

high or low level for the experimental run. As an example, GameID 5 would convert

to 0101 in binary, indicating that factors 1 and 3 used low values represented by 0,

while 2 and 4 used high values indicated by a value of 1.

GameID SSLOF SSRE SSPE F-Value P-Value

0 5139897.74 32809474 27669575.97 0.42 1
1 5162482.66 31911121 26748638.75 0.44 1
2 4496450.89 33691388 29194936.62 0.35 1
3 4435268.54 33034938 28599669.076 0.35 1
4 7074655.49 41155052 34080396.096 0.47 1
5 6808527.68 39557849 32749321.58 0.48 1
6 6721028.18 39229836 32508807.43 0.47 1
7 6111007.23 37505412 31394404.65 0.44 1
8 3458452.86 29517950 26059497.01 0.30 1
9 3561765.86 30233351 26671585.62 0.30 1
10 4137606.82 28834309 24696702.26 0.38 1
11 4315342.06 29219810 24904468.14 0.40 1
12 4963847.08 35642828 30678981.31 0.37 1
13 4868573.30 34937354 30068780.7450 0.37 1
14 4966175.46 30723939 25757763.9084 0.44 1
15 4814670.55 30020742 25206071.1000 0.44 1

Table B.10: Model Error and Lack of Fit Results for algorithm SSS_GW and response
variable Close Calls (CC).
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GameID SSLOF SSRE SSPE F-Value P-Value

0 36.14 239.48 203.33 0.41 1
1 41.46 276.13 234.67 0.40 1
2 70.56 461.23 390.67 0.41 1
3 81.43 546.09 464.67 0.40 1
4 171.09 921.75 750.67 0.52 1
5 194.04 1022.04 828.00 0.54 1
6 261.59 1416.26 1154.67 0.52 1
7 305.87 1652.53 1346.67 0.52 1
8 40.64 303.31 262.67 0.35 1
9 44.44 355.78 311.33 0.33 1
10 69.44 498.10 428.67 0.37 1
11 79.79 550.45 470.67 0.39 1
12 154.75 926.08 771.34 0.46 1
13 165.41 1028.74 863.34 0.44 1
14 285.30 1519.96 1234.67 0.53 1
15 311.55 1729.55 1418.00 0.50 1

Table B.11: Model Error and Lack of Fit Results for algorithm SSS_GW and response
variable number of fruit eaten (FE).

GameID SSLOF SSRE SSPE F-Value P-Value

0 1302.14 11066.1 9764.00 0.30 1
1 1275.41 10828.8 9553.33 0.30 1
2 1453.06 11315.1 9861.99 0.33 1
3 1396.52 11529.9 10133.33 0.31 1
4 2004.42 10579.8 8575.33 0.53 1
5 2005.82 10418.5 8412.66 0.54 1
6 1974.15 12034.2 10059.99 0.44 1
7 1979.19 11793.2 9813.99 0.46 1
8 1573.26 11475.9 9902.66 0.36 1
9 1516.32 11359.0 9842.66 0.35 1
10 1677.90 11603.2 9925.33 0.38 1
11 1754.02 11520.7 9766.66 0.41 1
12 2115.69 14845.0 12729.33 0.37 1
13 1909.46 14431.5 12522.00 0.34 1
14 1833.63 12889.0 11055.33 0.37 1
15 1864.43 12658.4 10793.99 0.39 1

Table B.12: Model Error and Lack of Fit Results for algorithm SSS_GW and response
variable number of ghosts eaten (GH).
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GameID SSLOF SSRE SSPE F-Value P-Value

0 64.77 422.10 357.33 0.41 1
1 69.24 426.58 357.33 0.44 1
2 80.70 477.36 396.66 0.46 1
3 75.70 457.70 382.00 0.45 1
4 86.72 488.06 401.33 0.49 1
5 85.51 479.51 394.00 0.49 1
6 83.86 467.19 383.33 0.50 1
7 75.80 437.81 362.00 0.47 1
8 60.35 431.02 370.66 0.37 1
9 61.04 439.70 378.66 0.36 1
10 72.72 472.72 400.00 0.41 1
11 78.37 474.37 396.00 0.45 1
12 81.38 493.38 412.00 0.45 1
13 75.01 494.34 419.33 0.40 1
14 77.91 445.24 367.33 0.48 1
15 75.51 414.18 338.66 0.50 1

Table B.13: Model Error and Lack of Fit Results for algorithm SSS_GW and response
variable levels completed (LVL_COMP).

GameID SSLOF SSRE SSPE F-Value P-Value

0 755.86 5354.53 4598.66 0.37 1
1 787.90 5345.90 4558.00 0.39 1
2 925.74 5833.08 4907.33 0.43 1
3 835.53 5658.21 4822.66 0.39 1
4 1053.99 5863.33 4809.33 0.50 1
5 1023.27 5726.61 4703.33 0.49 1
6 970.77 5634.78 4664.00 0.47 1
7 906.30 5413.64 4507.33 0.45 1
8 686.75 5474.76 4788.00 0.32 1
9 689.76 5545.10 4855.33 0.32 1
10 864.76 5663.43 4798.66 0.41 1
11 890.28 5606.28 4716.00 0.43 1
12 988.40 6665.07 5676.66 0.39 1
13 945.83 6505.84 5560.00 0.38 1
14 870.73 5454.74 4584.00 0.43 1
15 838.98 5136.98 4297.99 0.44 1

Table B.14: Model Error and Lack of Fit Results for algorithm SSS_GW and response
variable number of power-pellets collected (PP).
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GameID SSLOF SSRE SSPE F-Value P-Value

0 887877.89 7173890 6286011.70 0.32 1
1 896728.94 7142870 6246141.33 0.32 1
2 1079141.10 7692743 6613601.63 0.37 1
3 1091616.22 7655808 6564191.86 0.38 1
4 1386154.47 8261387 6875232.53 0.46 1
5 1365221.92 7960347 6595125.03 0.47 1
6 1433994.04 8230351 6796356.50 0.48 1
7 1392054.81 7904170 6512115.36 0.48 1
8 792089.17 6323164 5531074.81 0.32 1
9 827151.28 6465292 5638140.81 0.33 1
10 979103.29 6530968 5551864.91 0.40 1
11 990976.13 6370626 5379649.96 0.42 1
12 1056547.23 7386059 6329511.41 0.38 1
13 1040837.32 7200228 6159390.54 0.38 1
14 1129797.81 6825617 5695819.66 0.45 1
15 1104286.99 6602094 5497806.76 0.45 1

Table B.15: Model Error and Lack of Fit Results for algorithm SSS_GW and response
variable the number of repeated squares (RSQ).

GameID SSLOF SSRE SSPE F-Value P-Value

0 151728361.89 1046972253 895243891.26 0.38 1
1 158747180.06 1048942737 890195557.04 0.40 1
2 190373290.05 1171455663 981082372.51 0.44 1
3 170163363.10 1151157454 980994091.38 0.39 1
4 216552776.05 1192252185 975699409.16 0.50 1
5 212869299.04 1176690044 963820745.10 0.50 1
6 222620836.49 1262139005 1039518168.38 0.48 1
7 211677133.33 1229109899 1017432765.94 0.47 1
8 142003417.64 1091429582 949426163.87 0.34 1
9 146302461.76 1114516309 968213847.28 0.34 1
10 169387405.45 1143582873 974195467.46 0.39 1
11 182334550.63 1137611884 955277332.99 0.43 1
12 218062860.42 1474067813 1256004952.07 0.39 1
13 204951291.04 1447334895 1242383604.08 0.37 1
14 208192327.80 1286210993 1078018664.80 0.44 1
15 195944111.45 1215233074 1019288962.14 0.43 1

Table B.16: Model Error and Lack of Fit Results for algorithm SSS_GW and response
variable player's score (Sc).
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GameID SSLOF SSRE SSPE F-Value P-Value

0 3502776.90 26917232 23414455.52 0.34 1
1 3638341.61 26773066 23134724.77 0.35 1
2 4233108.63 28928507 24695398.48 0.39 1
3 3939135.38 28101483 24162347.46 0.37 1
4 4944868.40 29706998 24762129.99 0.45 1
5 4918815.73 28908736 23989920.08 0.46 1
6 4933101.09 28790278 23857176.88 0.47 1
7 4578868.48 27308652 22729783.74 0.46 1
8 3099907.87 25665106 22565197.69 0.31 1
9 3150211.33 26214127 23063915.40 0.31 1
10 4031275.20 26556554 22525278.94 0.40 1
11 4209986.19 26221447 22011460.93 0.43 1
12 4475710.45 31744069 27268358.75 0.37 1
13 4381520.99 31069720 26688199.09 0.37 1
14 4420155.79 27172988 22752831.84 0.44 1
15 4176477.64 25496758 21320280.56 0.44 1

Table B.17: Model Error and Lack of Fit Results for algorithm SSS_GW and response
variable number of steps (St).

GameID SSLOF SSRE SSPE F-Value P-Value

0 1050854.47 7283667 6232812.89 0.38 1
1 1096403.77 7223303 6126899.41 0.40 1
2 1225914.44 7947792 6721877.74 0.41 1
3 1092003.90 7565352 6473348.24 0.38 1
4 1389906.66 7994863 6604955.93 0.48 1
5 1364659.43 7841928 6477268.78 0.48 1
6 1288196.67 7431407 6143209.93 0.47 1
7 1169026.03 7052466 5883440.03 0.45 1
8 919549.55 7359691 6440141.02 0.32 1
9 935858.03 7514456 6578598.36 0.32 1
10 1185911.01 7629175 6443263.92 0.42 1
11 1244553.65 7552756 6308202.55 0.45 1
12 1367296.91 9271345 7904048.28 0.39 1
13 1343819.32 9114256 7770437.06 0.39 1
14 1250179.20 7584069 6333890.26 0.45 1
15 1169860.57 7011349 5841488.26 0.45 1

Table B.18: Model Error and Lack of Fit Results for algorithm SSS_GW and response
variable number of tokens collected (TO).
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B.3 PW_FLOCK Model Error

This Appendix section presents a condensed form of the results of the lack-of-�t test,

the residual and pure error terms for the each model. Due to the large number of game

sessions and response variables we condensed the results. The results demonstrate the

interval to which all of the model's F-Values occur within for each response variable.

In addition, we display the P-Value indicating whether the lack-of-�t was signi�cant

(α<0.05) or non-signi�cant(α>0.05).

Responses Mean F-Value Minimum F-Value Maximum F-Value P-Value

CC 0.33 0.15 0.52 1.0
FE 0.39 0.25 0.54 1.0
GH 0.3 0.15 0.49 1.0

LVL_COMP 0.36 0.2 0.53 1.0
PP 0.33 0.19 0.48 1.0
RSQ 0.32 0.16 0.51 1.0
Sc 0.33 0.19 0.49 1.0
ST 0.31 0.14 0.51 1.0
TO 0.33 0.19 0.52 1.0

Table B.19: The F-Values for all game sessions calculated using the residual error,
pure error and lack-of-�t.

B.4 PW_GW Model Error

This Appendix section presents a condensed form of the results of the lack-of-�t test,

the residual and pure error terms for the each model. Due to the large number of game

sessions and response variables we condensed the results. The results demonstrate the

interval to which all of the model's F-Values occur within for each response variable.

In addition, we display the P-Value indicating whether the lack-of-�t was signi�cant

(α<0.05) or non-signi�cant(α>0.05).
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Responses Mean F-Value Minimum F-Value Maximum F-Value P-Value

CC 0.40 0.19 0.61 1.0

FE 0.44 0.26 0.67 1.0

GH 0.37 0.19 0.53 1.0

LVL_COMP 0.48 0.18 0.67 1.0

PP 0.39 0.15 0.62 1.0

RSQ 0.42 0.19 0.64 1.0

Sc 0.42 0.21 0.62 1.0

ST 0.41 0.2 0.6 1.0

TO 0.40 0.17 0.65 1.0

Table B.20: Model Error and Lack of Fit Results for algorithm PW_GW and response

variable close calls (C). Part 1
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Appendix C

Proof of Concept Statistics

The tables presented in this Appendix demonstrate the mean performance for all

response variables over the game session selected for use in the adaptive game system

prototype. Each table is composed of 3 rows indicating, each row presents the mean

results for that life.

C.1 SSS_FLOCK Mean Performance Per Life

The SSS_FLOCK algorithm used the game session 0, indicating that none of the

factors used a high level value.

ALGO_ID LIFE SCORE nSteps nLevCom nCC FC

7 0 748.6 138.5 0.07 43.5 1.59
7 1 609.3 118.1 0.26 50.4 1.30
7 2 571.7 111.6 0.3 50.2 1.18

Table C.1: The mean performance of the SSS_FLOCK for each life over the experi-
ment.

ALGO_ID LIFE FE GE PPE TOKE RepStep

7 0 0.24 1.35 2.87 100.61 35.00
7 1 0.22 0.88 1.64 66.78 49.71
7 2 0.20 0.72 1.35 56.96 53.32

Table C.2: The mean performance of the SSS_FLOCK for each life over the experi-
ment.
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C.2 SSS_GW Mean Performance Per Life

The SSS_GW algorithm used in the adaptive game session included all factors at

their low level except for fruit time.

ALGO_ID LIFE SCORE nSteps nLevCom nCC FC

6 0 590.15 91.78 0.01 36.25 0.90
6 1 446.53 86.95 0.06 55.27 0.83
6 2 400.80 80.76 0.15 66.42 0.74

Table C.3: The mean performance of the SSS_GW for each life over the experiment.

ALGO_ID LIFE FE GE PPE TOKE RepStep

6 0 0.2 1.95 2.04 71.00 18.74
6 1 0.1 1.32 1.26 50.83 34.86
6 2 0.1 1.08 0.88 37.26 42.63

Table C.4: The mean performance of the SSS_GW for each life over the experiment.

C.3 PW_FLOCK Mean Performance Per Life

The PW_FLOCK algorithm used in the adaptive game session included all factors

at their low level except for PW_BAD_GHOST.

ALGO_ID LIFE SCORE nSteps nLevCom nCC FC

1 0 548.74 113.22 0.01 25.28 1.23
1 1 349.31 95.44 0.08 37.05 0.98
1 2 312.72 98.35 0.15 40.20 1.03

Table C.5: The mean performance of the PW_FLOCK for each life over the experi-
ment.

ALGO_ID LIFE FE GE PPE TOKE RepStep

1 0 0.12 0.79 2.20 83.16 27.85

1 1 0.13 0.43 1.16 44.96 49.33

1 2 0.15 0.31 0.83 33.31 64.21

Table C.6: The mean performance of the PW_FLOCK for each life over the experi-

ment.
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C.4 PW_GW Mean Performance Per Life

The PW_GW algorithm used in the adaptive game session included all factors at

their low level except for PW_BAD_GHOST.

ALGO_ID LIFE SCORE nSteps nLevCom nCC FC

0 0 495.4 91.8 0.00 30.4 0.91
0 1 313.9 81.8 0.02 45.5 0.77
0 2 222.2 91.5 0.04 45.0 0.95

Table C.7: The mean performance of the PW_GW for each life over the experiment.

ALGO_ID LIFE FE GE PPE TOKE RepStep

0 0 0.1 1.1 1.8 70.2 19.8
0 1 0.1 0.8 1.0 38.3 42.5
0 2 0.2 0.5 0.6 21.9 69.0

Table C.8: The mean performance of the PW_GW for each life over the experiment.
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Appendix D

Regression Equations (Prototype)

The regression equations where utilized in the adaptive game system prototype as the

heuristics for two cases: PW_FLOCK and PW_GW algorithms. These regression

equations where used to calculate the expected value of the response variables, number

of steps and score respectively.

D.1 PW_FLOCK Regression Equation

The regression equation for estimating the number of steps for the PW_FLOCK

algorithm adaptive game session including three separate equations, one for each

Pac-Man life. Presented in the Table D.1 are the coe�cients for each performance

measures used during each life.

LIFE Coe�cient Score nLevCom nCC FE GE PPE

0 10.1 0.18 -96.4 0.5 -5.7 -18.9 25.1
1 3.6 0.36 -184 0.3 -19.0 -40.7 -6.6
2 62.7 0.3 -157 0.2 -7.1 -37.3 0.5

Table D.1: The regression equation coe�cients to estimate the steps of the
PW_FLOCK algorithm in the adaptive game system prototype.

D.2 PW_GW Regression Equation

The regression equation for estimating the score for the PW_GW algorithm adap-

tive game session included one equation for the entire life. The coe�cients for the

regression equations are listed for each performance measure.
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Coe�cient Step nLevCom nCC GE PP RSQ

31.6 31.6 574 -0.02 101 17.3 -3.4

Table D.2: The regression equation coe�cients to estimate the score of the PW_GW

algorithm in the adaptive game system prototype.
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Appendix E

Response Variables Descriptive Statistics

Within this Appendix we present descriptive statistics of the response variables over

each algorithm. This information was used to select target ranges for adaptive game

and helped build the heuristics.

E.1 SSS_FLOCK Descriptive Statistics

This Appendix presents some descriptive statistics over all games played with the

SSS_FLOCK algorithm.

SSS_FLOCK SCORE nSteps nLevCom nCC FC

Mean 1929.6 368.2 0.7 144.2 4.1
StDev 1017.0 161.1 0.7 104.6 3.2
Min 385 82 0 5 0
Max 6655 994 3 729 19
Range 6270 912 3 724 19

Sample Size 6144 6144 6144 6144 6144

Table E.1: SSS_FLOCK Response Variables Descriptive Statistics

SSS_FLOCK FE GE PPE TOKE RepStep

Mean 0.7 3.0 5.9 224.4 138.0
StDev 0.9 2.0 2.4 91.5 72.3
Min 0 0 1 70 3
Max 7 13 16 609 453
Range 7 13 15 539 450

Sample Size 6144 6144 6144 6144 6144

Table E.2: SSS_FLOCK Response Variables Descriptive Statistics
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E.2 SSS_GW Descriptive Statistics

This Appendix presents some descriptive statistics over all games played with the

SSS_GW algorithm.

SSS_FLOCK SCORE nSteps nLevCom nCC FC

Mean 1437.5 259.5 0.2 158.0 2.5
StDev 704.1 108.7 0.4 120.2 2.2
Min 300 58 0 4 0
Max 7255 993 3 1092 19
Range 6955 935 3 1088 19

Sample Size 49152 49152 49152 49152 49152

Table E.3: SSS_GW Response Variables Descriptive Statistics

SSS_FLOCK FE GE PPE TOKE RepStep

Mean 0.3 4.4 4.2 159.1 96.2
StDev 0.6 2.3 1.5 57.1 55.2
Min 0 0 0 52 3
Max 6 19 16 598 460
Range 6 19 16 546 457

Sample Size 49152 49152 49152 49152 49152

Table E.4: SSS_GW Response Variables Descriptive Statistics

E.3 PW_FLOCK Descriptive Statistics

This Appendix presents some descriptive statistics over all games played with the

PW_FLOCK algorithm.

SSS_FLOCK SCORE nSteps nLevCom nCC FC

Mean 1210.8 307.0 0.3 102.5 3.2
StDev 674.8 158.0 0.5 111.8 2.9
Min 140 32 0 3 0
Max 5790 1050 3 1751 21
Range 5650 1018 3 1748 21

Sample Size 393216 393216 393216 393216 393216

Table E.5: PW_FLOCK Response Variables Descriptive Statistics
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SSS_FLOCK FE GE PPE TOKE RepStep

Mean 0.4 1.5 4.2 161.4 141.4
StDev 0.7 1.3 1.6 60.8 111.2
Min 0 0 0 28 0
Max 8 13 14 587 889
Range 8 13 14 559 889

Sample Size 393216 393216 393216 393216 393216

Table E.6: PW_FLOCK Response Variables Descriptive Statistics

E.4 PW_GW Descriptive Statistics

This Appendix presents some descriptive statistics over all games played with the

PW_GW algorithm.

SSS_FLOCK SCORE nSteps nLevCom nCC FC

Mean 1031.5 265.1 0.1 120.7 2.6
StDev 482.6 173.4 0.2 140.8 3.1
Min 145 34 0 0 0
Max 6190 1051 2 2061 21
Range 6045 1017 2 2061 21

Sample Size 3145728 3145728 3145728 3145728 3145728

Table E.7: PW_GW Response Variable Descriptive Statistics

SSS_FLOCK FE GE PPE TOKE RepStep

Mean 0.4 2.3 3.4 130.4 131.3

StDev 0.7 1.7 1.1 38.9 150.5

Min 0 0 0 29 0

Max 12 18 12 473 960

Range 12 18 12 444 960

Sample Size 3145728 3145728 3145728 3145728 3145728

Table E.8: PW_GW Response Variables Descriptive Statistics
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Appendix F

E�ects Descriptive Statistics

F.1 Close Calls Factor E�ects Descriptive Statistics

In Table F.1 descriptive statistics of the e�ect sizes are presents for the response

variable close calls.

N Absolute_Mean StdDev Min Max

SSS_FLOCK 2048 2.34 4.14 -31.61 38.25
SSS_GW 16384 3.08 4.49 -39.20 58.25

PW_FLOCK 131072 2.67 4.16 -49.43 51.25
PW_GW 1048576 3.49 5.20 -96.0 88.6

Table F.1: Close Calls Response Variable Descriptive Statistics

F.2 Fruit Eaten Factor E�ects Descriptive Statistics

In Table F.2 descriptive statistics of the e�ect sizes are presents for the response

variable fruit eaten.

N Absolute_Mean StdDev Min Max

SSS_FLOCK 2048 0.19 0.03 -0.25 0.37
SSS_GW 2048 0.02 0.02 -0.17 0.16

PW_FLOCK 16384 0.01 0.02 -0.36 0.57
PW_GW 1048576 0.02 0.03 -1.40 0.43

Table F.2: Fruit Eaten Response Variable Descriptive Statistics
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F.3 Ghosts Eaten Factor E�ects Descriptive Statis-

tics

In Table F.3 descriptive statistics of the e�ect sizes are presents for the response

variable ghosts eaten.

N Absolute_Mean StdDev Min Max

SSS_FLOCK 2048 0.04 0.07 -0.36 0.87
SSS_GW 16384 0.06 0.09 -0.99 1.46

PW_FLOCK 131072 0.03 0.05 -0.56 0.95
PW_GW 1048576 0.04 0.06 -0.90 1.45

Table F.3: Ghosts Eaten Response Variable Descriptive Statistics

F.4 Levels Completed Factor E�ects Descriptive Statis-

tics

In Table F.4 descriptive statistics of the e�ect sizes are presents for the response

variable levels completed.

N Absolute_Mean StdDev Min Max

SSS_FLOCK 2048 0.01 0.02 -0.18 0.17
SSS_GW 16384 0.012 0.015 -0.154 0.087

PW_FLOCK 131072 0.01 0.01 -0.22 0.22
PW_GW 1048576 0.006 0.008 -0.138 0.076

Table F.4: Levels Completed Response Variable Descriptive Statistics

F.5 Power-Pellets Collected Factor E�ects Descrip-

tive Statistics

In Table F.5 descriptive statistics of the e�ect sizes are presents for the response

variable power-pellets collected.
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N Absolute_Mean StdDev Min Max

SSS_FLOCK 2048 0.05 0.08 -0.72 0.69
SSS_GW 16384 0.04 0.056 -0.689 0.362

PW_FLOCK 131072 0.03 0.06 -0.88 1.21
PW_GW 1048576 0.02 0.04 -0.98 0.47

Table F.5: Power-Pellets Collected Response Variable Descriptive Statistics

F.6 Repeated Squares Factor E�ects Descriptive Statis-

tics

In Table F.6 descriptive statistics of the e�ect sizes are presents for the response

variable repeated squares.

N Absolute_Mean StdDev Min Max

SSS_FLOCK 2048 1.55 2.60 -20.85 18.72
SSS_GW 16384 1.41 2.02 -27.88 13.41

PW_FLOCK 131072 2.55 4.04 -57.20 60.28
PW_GW 1048576 3.52 6.11 -216.50 81.05

Table F.6: Repeated Squares Response Variable Descriptive Statistics

F.7 Score Factor E�ects Descriptive Statistics

In Table F.7 descriptive statistics of the e�ect sizes are presents for the response

variable score.

N Absolute_Mean StdDev Min Max

SSS_FLOCK 2048 22.03 36.72 -321.69 255.96
SSS_GW 16384 18.37 25.46 -268.73 178.0

PW_FLOCK 131072 15.98 25.15 -355.16 416.72
PW_GW 1048576 11.87 18.03 -489.11 287.81

Table F.7: Score Response Variable Descriptive Statistics
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F.8 Steps Factor E�ects Descriptive Statistics

In Table F.8 descriptive statistics of the e�ect sizes are presents for the response

variable steps.

N Absolute_Mean StdDev Min Max

SSS_FLOCK 2048 3.48 5.82 -49.02 36.91
SSS_GW 16384 2.79 4.01 -57.57 28.30

PW_FLOCK 131072 1.42 2.24 -32.57 41.73
PW_GW 1048576 4.04 7.03 -241.59 92.50

Table F.8: Steps Response Variable Descriptive Statistics

F.9 Tokens Collected Factor E�ects Descriptive Statis-

tics

In Table F.9 descriptive statistics of the e�ect sizes are presents for the response

variable tokens collected.

N Absolute_Mean StdDev Min Max

SSS_FLOCK 2048 2.00 3.35 -27.95 24.51
SSS_GW 16384 1.48 4.00 -57.56 28.29

PW_FLOCK 131072 1.42 2.24 -32.57 41.73
PW_GW 1048576 0.94 1.45 -43.66 16.13

Table F.9: Tokens Collected Response Variable Descriptive Statistics
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